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Preface

The original intent of this effort was to produce a fractional
order sensor for use in monitoring structural vibrations. As the work
progressed it was expanded to include analog simulation and proof-ot-
concept for fractional-order feedback. This goal was achieved.
Incorporating fractional-order circuits into active feedback control
systems will provide many advantages for controls engineers.

Many thanks to my advisor, Lt Col Ron Bagley. I don’t know if I
can ever thank you for your patience, understanding and commitment.
Dr. Torvik, thank you for insulating me from the repercussions that
could have been there for not finishing on time. Thank you, Maj Kolesar
for your comments on the A/D recorder. It was the key to our success.

To members of my family (the Fischer clan) and Emmanuel Lutheran
Church, thanks for your prayers and support. Special thanks to Wil
Schonscheck for weekly putting life into proper perspective.

To my wife and kids: Nita, your patience, encouragement and love
were there when I needed them most. Nathan and Katie, teenagers
deserve more than a dad whose nose is buried in a book except when
telling you to clean your room and wash dishes. Josh and Gabe - Daddy
will finally be able to play soccer with you again.

Finally, the real credit belongs to Jesus Christ who's given me all
I have and sees me through the trials - even though at times the

battles seem overwhelming. Through Him, the final victory's ours.
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Abstract

SUMMARY: Feedback of the 1.2 and 3-2 derivatives as wvell as X and
X is demonstrated for a second-order system defined by the differential

equation:

7 7

" 3. . £.,72
mx + ¢ D (X) +¢ X + ¢ D 0O+ kx = wt)y
1t 2 3t

N\

&
= Three methods of producing the fractional derivative or integral
of an input signal are investigated. The method selected employs a

circuit developed at Trent University, Ontario, Canada for use in

v

operation é?ii}bﬂhe— -1 ¢ v ¢ 1; negative values of ¥ represent
integration The results presented show the circuit accurately

electrochemistry resefi:i:) The circuit performs the mathematical
or

differentiates a sinusoidal input for a frequency range spanning 0.01 Hz
to 10.0 Hz.

Cf;;e second-order differential equation above ig simulated on
an analog computer. An optimal ul(t) is then used for feedback
modification of the original open-loop system. Improved gystem
performance resulted.;

CTZ—Z;;I;;; tran;;orm method and a Mittag-Leffler expansion provide
analytical predictions of the system’s response. The output of the two
methods is identical. Comparison of the theoretical predictions with
the experimental data shows excellent agreement with respect to the
initial transient behavior and asymptotic behavior of the steady-state

e
response for both the open- and closed-loop systems. ZL‘7uﬂ‘41; Tlesas

/
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} FRACTIONAL-ORDER FEEDBACK IN LINEAR SYSTEMS
L

1. Introduction

d’tt (%] (1)

Members of the gcientific and engineering community have little
difficulty in recognizing Eq (1) as the vth derivative of a function of
the variable x with respect to time. But how many will pose the
question L'Hospital asked Leibniz in 1695, “What if v be one-half ?°.
Leibniz replied that it will "lead to a paradox”, but added, "“someday it
would lead to useful consequences” (1:115). (For an historical
development of fractional calculus the reader is directed to
reference 1.)

Fractional derivatives have indeed proven useful in the analysis of
a wide variety of physical systems (2:126). In the context of this
research, fractional derivatives are capable of describing the behavior

of viscoelagtically-damped structures (3:348,4:209). The spacecraft and

(1)




in their designs. This expanding interest has motivated an
investigation of active control requirements for viscoelastically-damped
systems. The stability of feedback in such systems has been addressed
(3:351). However, implementation of such a control system requires
development of a feedback method (6) and a sensor or instrument capable
of producing the fractional derivative or integral of electrical
signals.

Problem Statement

Current methods of providing the fractional derivative of an input
signal require either digital processing or resistor-capacitor circuit
ladders containing many components. In addition, the resistor-capacitor
circuit ladder is designed for a fractional order of one-half (7:39).
The goal for this research wag to produce a general fractional
differentiator/integrator which serves as the key component in an active
control system for viscoelastically-damped structures.

Approach

Three parallel areas of investigation were examined in an attempt
to identify a device:

1) Excess charge carriers in doped semiconductors undergo a
diffusion process in pagsing through the semiconductor lattice. Bagley
and Torvik showed fractional derivatives of order one-half are common to
diffusion processes (8:2). The application of a focused monochromatic

light beam generates a localized excess concentration of charge carriers

(2)




in the gsemiconductor material and results in voltage changes as the
excess carriers diffuse away from the source (9:54). Measurement of
this voltage might provide a possible source of a fractional derivative.

2) Oldham identified a fractional integrating circuit of order
one-half in his textbook on fractional calculus (10.149). This circuit
has several characteristics which preclude it as an optimum choice.
However, in developing the theory for this circuit, reference was made
to Wall’'s work in continued fractions which can be used to represent
Laplace transforms of functionsg (11:355). This method might permit the
development of ladder circuits of fractional order, since sa is the
Laplace transform definition of a fractional derijivative.

3) Finally a continued investigation of the literature to identify
other scientific fields that might have fabricated or used such a device
for research will be undertaken. Electrochemistry and geophysics are
two fields in which fractional derivatives have found use
(2:126,10:154) .

Scope

The desirable attributes of the device include: i) Operation over a
wide range of frequencies (especially .01 to 200 Hz - the frequencies of
interest to many structural engineers), ii) small size, relatively few
components, passive in nature and inexpensive to manufacture, and

iii) generalization to any fractional order.

(3)




Evaluation of device performance will be accomplished in three
phases:

Phase 1. A function generator is used to apply a sinusoidal input
gignal of varying frequency to the device. The observed output should
match the expected magnitude and phase behavior of a 1/nth-order
fractional differentiator/integrator.

Phase 2. An analog computer simulation of a gecond-order gystem
incorporates the device to supply the fractional derivative terms of the
system. Solution techniques for thig type of system exist (12,13:141),
and experimental agreement within 10% of the predicted response is
established as the success criteria for this phase.

Phase 3. This thesis parallels the development of optimal
fractional-order feedback theory by Capt Rich Walker (6). The parameters
developed for feedback by application of his modified linear quadratic
regulator will be applied to the system referred to in Phase 2. The
ability of the feedback method to produce improved, stable control
system performance will be the criterion for success in this phase.
Asgsumptions

This research takes on only proof-of-concept development.

Circuitg, if built, will consist of discrete components fabricated on
breadboards. No attempt to use integrated circuit resistors and
capacitors will be made. Perfection of circuits and device operation
will be left as a follow-on task. Feedback will be accomplished through
manual adjustment of attenuators on the analog computer and not through

automatic means. Most systems exhibiting behavior that can be

(4)




modeled with fractional derivatives involve the half-order derivatives.
9 Initial investigation will consist of half-order devices that can be
generalized to s1/nth-order devices. While many materials exhibit
stress-strain and damping characteristics that can be modeled by
@ fractional derivatives, no effort will be made to tie the system

simulated on the analog computer to a physical system, or specific

material.

(5)




I11. Background

Evolution of Fractional Calculus

Beginning in 1695, when L'Hospital first posed the fractional
derivative question, many noted scientists and mathematicians have
focused their attention toward developing the foundation of fractional
calculus. In 1823 Neils Henrik Abel used fractional calculus to
formulate a solution to the tautochrone problem. This was the first
recorded application of fractional calculus (1:121). Beginning in 1832
Joseph Liouville published several papers dealing with fractional
derivatives (1:116). G.F. Bernhard Riemann developed a theory for
fractional integration which wag published posthumously in 1876 (1:116).
But neither Riemann nor Liouville were able to provide definitions for
Eq (1) which could be generalized for any v, positive or negative, and
for a sufficiently wide class of functions. Henri Laurent published
what many consider the foundation paper in fractional calculus in 1884.
In this paper, Laurent produced a definition of fractional operations
which also applied to integer values of » and followed precisely the
rules of integer calculug for differentiation and integration (1:118).
Finally in 1936, with the theory of fractional operations well defined,
Harold T. Davis developed a notation for fractional operationg which

will be used throughout the remainder of thig paper (1:117):

Let V be a positive real number, cDx-Vf(x) will derote
integration of order ¥V of function f along the x axis from ¢
to %. Similarly, the operator c¢Dx foo denotes differentia-
tion of order V with terminal limite ¢ and x.1:111?

(6)




The mathematical interpretation of the integration operator in the

time domain:

1 t
D, Vi)l = — [ (t-1) ¥ H(nar (2)
c t

rv) ¢

One would assume that the definition of fractional differentiation
would involve replacing v by - in Eq (2). However, this produces a
divergent integral. To obtain a fractional derivative, first integrate
to the correct fractional order between 0 and 1 and then use

conventional differentiation to obtain the desired result:

m
v - m-£, - d 1 t o P
Ly = P T = — [ Far fe (40 ’f(ndr] (3)

Where m igs the leagst integer greater than v, v = m-p, and 0 ¢ @ =1
(1:1186).

Except for a small clasg of functions, Eqs (2) and (3) are not
computationally convenient to use. However, if both expressions are
treated ag convolution integrals, the fractional operators have gimple

definitions in the Laplace domain:

LDVt () ) = 8 VL (1) ) (4)

201 ) = ™ P2 1(1) ) ()
It is through the use of thegse Laplace transform operators that

fractional calculus proves to be most useful (2.126).

(7)




Physical Application

Abel used fractional calculus to determine the gshape of a wire in a
vertical plane which would cause a bead placed on the wire to take the
game amount of time to reach the lower end no matter where the bead was
originally placed (1:121). 1In 1921 P.G. Nutting noted stress relaxation
properties in viscoelastic materials could be modeled by fractional
powers of time rather than the traditionally expected decaying
exponential (2:126). This development led A. Gemant in 1938 to propose
time differentiation of fractional order for modeling stiffness and
damping properties of viscoelastic materials (2:126). In 1966,

M. Caputo suggested fractional derivatives might be used to model the
behavior of geological strata (2:126). In 1970, V. 0. Shestopol
employed fractional calculus to describe the mechanism of deformation in
tungsten and platinum at high temperatures (2:126). Other areas of
physical application include creep and stress relaxation, creep
buckling, and techniques for fitting experimental data. (2:126 -~ This
reference igs an excellent source for a higstorical perspective of the
application of fractional calculus to damping.)

Beginning in 1979, R. Bagley and P. Torvik published a series of
articles developing a method for modeling the behavior of viscoelasgtic
materials by using fractional derivatives in a finite element
formulation. The stress-strain curve for vigcoelagtic materials is
dependent, not only on the applied load, but also on the frequency at
which the load is applied. Previous methods of modeling this phenomena
were computationally difficult to use for anything but steady-state

conditions or predicted non-causal behavior -- both of which made

(8)




trangient analysis of viscoelastic systems impractical (14.741). Bagley
showed that a fractional derivative model, incorporating three to five
parameters, could be used to accurately describe the behavior of many
vigcoelastic materials over a large range of frequencies (2:128).
Approximately 130 materials have been characterized in this manner
(2:130). Subsequent research verified the damping characteristics of
viscoelastic materials could also be modeled in a gimilar fashion
(15:83). 1In 1985, Bagley and Torvik showed finite element methods could
incorporate fractional calculus, effectively increaging the usefulness
of fractional calculus to the structural analyst (14:743).

When a model effectively describes a physical system over an entire
range of operating conditions, one might expect the model to also
predict behavior for conditions outside of range tested. One of the
areas of recent interest in engineering is the damping requirements of
large space structures. The excellent damping properties of
viscoelastic materials make them highly suitable candidates for use in
such structures. The space environment cannot be simulated in
ground-based testing. A model that can predict performance outside of
testable conditiong is necegsary. Bagley and Torvik present a strong
argument for accepting the fractional calculus model as such (2:134).

Requirements for these structures will no doubt include some
combination of active and pagsive control for station-keeping and other
mission requirements. If viscoelastic materials are integral to these
gstructures, it seems likely that the control system should include and

adapt the fractional-order model. Three questions immediately arise --

(9)




can fractional orders of displacement be sensed; is there a constitutive
control law for fractional-order feedback in these systems; and, is sguch
feedback stable ?

Steven B Skaar, et al, addressed the stability of fractional order
feedback in simple physical gystems and outlined conditions necesgsary to
guarantee a stable system (3). The paper digscussed the characteristics
of a fractional-order sensor and suggested a circuit comprised of
lead-lag transfer functions (3:355). However, the authors stated more
study was required to develop the idea. In addition, the paper
addregsed the form of the feedback control law. The feedback must be a
function of the vibration frequency and must be of the same order as the
equations of motion. In other words, if the material properties are
best described by the one-half and three-halves derivatives, the
feedback should be of the same form (3:356).

Capt Rich Walker went further in his 1988 AFIT Master's Thesis,
defining an optimal linear quadratic feedback control law. His research
showed that linear feedback of the fractional- and integer-order terms
of a gsecond-order system could both improve performance and guarantee
stability. One of the assumptions made in his paper was the existence
of a gensor or device which would provide the fractional-order input
signals to the controller (6).

Summation

Models exist, uging fractional derivatives, which accurately
describe and predict the behavior of viscoelastic systems. The use of
viscoelastic systems in large space structures would provide a number of

benefits. A control law exists for feedback control of systems

(10)




containing these viscoelastic materialg. This law improves system
performance and produces stable systems. To implement this control law,
a device is required which produces the fractional-order derivative of
an input signal. This is the justification of the work to follow in
this thesis.

Potential Sources of Development

A rigid flat plate on the surface of a Newtonian fluid produces

motion in the fluid which can be described by the diffusion equation

(8:2):
at >

v = transgverse velocity profile in the fluid
z = vertical distance from the surface of the plate
o = ratio of fluid viscosity to fluid density
t = time
Simply stated, the time rate of change of the fluid is proportional
to the second derivative of velocity with respect to distance from the
surface of the plate. Bagley and Torvik show that the solution of this
equation is a fractional derivative of order one-half (8:2). Similar
golutions can be found for other parabolic differential equations. One
would expect that any diffusion process would result in fractional-order
solutions.
The goal ig to find a diffusion process where current, voltage, or

charge carriers, excited by an electrical or mechanical signal, diffuge

(11)




through some medium. The Haynes-Shockley experiment, circa 1949, is
used to create excess charge carriers in semiconductor materials by the
application of a focused monochromatic light source. These excess
charge carriers then diffuse through the semiconductor lattice and can
be measured at some distance from the source of the excitation (9:56).
One might expect the charge meagured to be related to the input source
by some type of diffusion process. This will be one area of
investigation.

Another type of diffusion process provides a second possible device
candidate. Electrochemists analyze solutions for electro-reducible
species with a two-electrode cell configuration. When the potential
(voltage) of one of the electrodes is lowered, electro-reduction occurs
at this electrode which creates a time-dependent faradaic current. The
half-order integral (semiintegral) of this current is proportional to
the bulk concentration of the solution’s oxidizer. The first method
uged to obtain the semiintegral involved recording the current versus
time response of the system; the result was then digitally processed.

K. Oldham developed a resistor/capacitor ladder circuit that
produced the analog semiintegral when hard-wired into the reduction
apparatus. This innovation gignificantly reduced the sample processing
time of the analysis. Oldham states this technique hag now become the
preferred method (7:39). One difficulty with Oldham’s circuit is the
number of cells (resistor/capacitor combinations) required to produce an
accurate output. Another ig its limitation to half-order fractional

operations, instead of general fractional orders.

(12)




The theory of continued fractions developed by Wall (11) was
gignificant in Oldham’'s development. Use of this theory might possibly
lead to the synthesis of a pasgsive component circuit which will produce
a generalized fractional-order output. Thig will be the alternative

area of investigation.

(13)




III. Theory

A specialized form of the continuity equation for excess minority

carriers in semiconductors is (9:56):

dn n-n dn azn (8)

where np = excess minority carrier dengity (free electrons) in

p-type semiconductor

npo = excess minority carrier density at equilibrium
H o= minority carrier mobility

£ = applied electric field

Dn = minority carrier diffusion coefficient

T = minority carrier lifetime.

n

This equation arises from pulsing the semiconductor surface with focused
beam of monochromatic light of the proper wavelength to generate excess
carriers. The term (np-npo)/“l'n represents the generation rate per
unit volume due to the excitation pulses. The carrier lifetime, 7T _,
represents the average time a minority carrier exists before
recombining with a hole. This parameter is a direct measure of the

number of impurities and imperfections in the semiconductor lattice.

The greater the number of imperfections, the shorter the lifetime.

( 14)




The solution to Eq (8):

2

N X t (9)
n (x,t) = exp § - +
P (4mD t)*7* 4D ¢ T

n

where N = number of carriers generated per unit volume (9:55).

The term N/(QﬂDnt)1/2 ig in the characteristic form of the result
agsociated with a half-order derivative operation. However, the
exponential term multiplying it gives a decaying exponential appearance
to the excess minority carrier population. If the exponents could be
set approximately equal to zero, the negative voltage from the free
electrons would be inversely proportional +to the half-order derivative
of the number of free electrons generated per unit volume. In an analog
simulation, the strength of the input pulse would be proportional to the
voltage of the input signal. The rate at which the carriers decay at
the measurement point, x, would be related to the half-order derivative
of the input. This criteria requires that two conditions be satisfied

since all the terms in the exponent are positive. That is,

X €0 (10}
t =0.0017
n
The first condition requires that the charge measurement be made
close to the excitation site. Inserting a probe close to the excitation
gite would affect the semiconductor properties, invalidating Eq (8).
Typical lifetimes in silicon and germanium are on the order of 107°
secondg (9:849). Thus, the maximum effective time in which to accomplish

the measurement would be 10-6 geconds. The lowest operating frequency

(15 )




of the device would then be in the Megahertz range. Most structural
engineerg are interested in frequencies three to four orders of
magnitude smaller than this. Some other method is needed; this
diffusion process is not a suitable candidate.

The ladder circuit, illustrated in Figure 1, which consists of
T-cells composed of resistors and capacitors, closely approximates a
half-order integrator if the number of cells are on the order of
100 (10:154). Several related articles also simulate half-order
operations with simpler circuitry (7:41,16:253). These other methods

were also limited to half-order operations.

Figure 1. T-Cell Ladder Circuit

One reference detailed the representation of certain functions
uging continued fractions (11). One function was of particular

interest:

( 16 )




(1

f e du 1
o(l+ zu)a

1 + (a+1)z

1+ 2z ......

The expression on the right hand-side of Eq (11) is called a continued

fraction (11:349). 1If the following substitutions are made:

u = gt - {12)
z = (RCs)
du = gdt
the term on the left becomes:
e-“dt _ a ° e-atdt
s I 1+ st o (RC) SJ a (13)
ta) =3
RCs
o o

This form looks like a Laplace transform. If the substitution

T = RC + t is made, the following transform results:

a e dt _ RCs a _ a
(RC) s o« - ® (RC)  I(l-o s (14)
RC + ¢t
o

From Section II, sais recognized as the Laplace trangform of the

fractional derivative of order a,

(17)




o

The continued fraction, with (RC.'#)“1 substituted for z, is the
impedance expression for the circuit illustrated in Figure 1. For a
given circuit, the impedance relation is written:

£(g)

i) - z(g) (15)

As an example, Figure 2 illustrates an abbreviated version of the ladder

circuit, and the impedance relation becomes:

2(g) = R+ —(/—— (16)

V in

Figure 2. Abbrevisted Lsdder Circuit

Dividing both sides by R1 and multiplying the fraction by unity gives:

z(s) R:’ = i (17)

The continued fraction is not yet in the form shown in Eq (11), but

(18)




v

by inverting both sides of Eq (17) and substituting Eq (15) for z(s):

i(s)R, _ 1 _ _RCs a o (18)
T(_)t- . Y = e (RC) I(1-9 s
s * RC @
1 0
i
1+
R C g
oo

But this is true only if the registors and capacitors in the circuit

have values such that:

Rn-m . M(m+a) 1 R : Cn-m . I"'(1+a) (m-1)! C (19)
F(l+a) m! M(m+a)

where n = the number of cells in the circuit and m goes from 0 to n

This finally produces an expressgion:

i) R = "o ra-a) g% e(s) (20)

This expression states the voltage drop across the first resistor
ig the fractional derivative of the input voltage multiplied by a
constant. However, the term enc: is a delay term. If the substitution
is made to transform 8 into the frequency domain, then for
sFjw (21)
the delay term becomes a function of frequency, implying the phase
shift of the circuit is not constant, but also is a function of
frequency. This circuit was fabricated and tested. The Bode gain plot
had the proper gain slope, but the circuit had a phase shift of 45 £ §

degrees over less than a decade of frequency.

(19)




o

Further investigation of the literature provided an article
degcribing a circuit which produced fractional derivative (or
integral) output (17). The authors claimed the circuit operated
guccessfully in the millisecond to several hundreds of seconds range.
Since frequency is the inverse of time, this performance
characteristic translated into frequencies sgpanning a range of 0.01 to
1000 Hz. However, the circuit had only been used with constant and ramp
input signals. One of the assumptions used in designing the circuit was
that the input current was constant. Because the circuit is a linear
device, it should be useful in processing sinusoidal signals. Again,
the circuit contains chains of resistors and capacitors, but this time
the cells are connected as illustrated in Figure 3. The following

narrative provides the rationale for why the circuit works:

If an input current is passed through the netwvork a potential
E (1) 19 generated across the jth pair of components. The
magnitude of the current is related to ihe component values
of Rj and (.:j by:

2
E (L d (22)
L = + Cc — [E
L ' o ( ; ]
J
vhich can be inverted (by Laplace transformation):
(23)
1 t - T
E) = — S it-T) exp [ ] ar
J C. R C.
J < 3 J
T being an integration variable. Since W) 18 common to all
pairs it followvs the potential across the entire circuit is:
t +N . T (24)
EL = Si-T) S —— exp [ ] et
c J=-n cj lljt:.i

(20)




SCHEMATIC SYMBOL

In the limit as n and N approach infinity and 0 and g

approach unity:

(21)

R. n‘ R. n’ RO n. FI,
O_jf__ f V out R,
| | | O+ WA—
| | | | j | | | | l || L || | |
P 1 ! Pl R P I
c. c| c‘ C, C; c' C.
Figure 3. Oldham-Zoski Circuit Schematic
Adjacent reaistora are now stipulated to differ in volue
by a constant factor, as do the capacitor values, although
the progression ratios are not necessarily equal. Thus:
. s (25)
lt.=g'llt amdc,=a"c
] o J o
vhere G and g are geometric ratios, both > 1. A parameter V
is defined relating G to ¢
n @ (26)
v =
in g
and Eq (24) can be recast
v o .
R "i.('.-‘!') *N TGJ J —TGJ J
B = Ny = g oxp [ g] 4t
1-V v j=-n RC R C
<, cT cc o o (27




v
T cac(Vm) R t.
Et = ) put-v o (28)
1-v
Faa-vitncay 0 €T

and by using the Riemann-Liouville definition of a fractional
integral as in Section 1IX (17:27):

1 24
T cacV™ R v-1
d [icwy]

Bt = S ) (29)
Fra-vyirvagy ¢ dt

o

[o L

Therefore, the input voltage is proportional to the integral of the
current through the circuit. From the principle of continuity the input
current equals the output current. If a registor is connected in series
with this circuit, the voltage across the resistor, En(t) ig related to
the input voltage E(t):

-

lncagy e Ecu)

En(t) = i(t) R = (30)

v v
T cec( V) Ro dt

The voltage across this resistor is the 1-vth derivative of the input
voltage. Additional detaila of this circuit - henceforth referred to
as the Oldham-Zogki circuit (0Z) - are contained in Appendix E
(including fabrication and interface details).

The theory for simulating a second-order equation, including
half-order terms supplied by the 0Z circuit, is developed in Section IV
under the subheading Analog Simulation. Basically, given a set of
initial conditions and a set of coefficients for a second-order system,
the response, as a function of time, can be obtained on the analog

computer.

(22)




Finally, there is a need to evaluate experimental results and be
confident in their accuracy. Two techniques will be used to predict the
theoretical results of the open and closed loop simulationg. Firgt, a
Laplace transform method which will be used to evaluate the residues and
a contour integral in the 8 plane. Second, a Mittag-Leffler expansion
which will be used to expand the homogeneous golution of the differential
equation as an infinite series in the time domain. Details of the
Laplace trangform method are included in Appendix A. Appendix C details

the Mittag-Leffler expansion.

(23)




1V. Experimental Procedure

Overview
This section details eight distinct tasks:

1) Circuit design and fabrication. The details of realizing the
half-order derivative circuit are presented.

2) Circuit Performance Evaluation. A signal generator was used to
produce a sinusoidal signal of varying frequency as the input to the
half-order circuit. The output of the circuit was compared to the input
signal to ensure the proper phase and magnitude relationships existed.

3) Circuit Gain Adjustment for Analog Simulation. To obtain
a zero amplitude offset of the derivative signal, several operational
amplifiers and a potentiometer were combined with the half-order
circuit.

4) Half-Order Analog Performance Evaluation. A harmonic
oscillator circuit was programmed on an analog computer. Its output was
introduced into the circuit and op amp half-order combinations to ensure
proper phase and magnitude performance.

5) Fractional-Order Equation Synthesig. Using the physical variable
method, a second-order differential equation, including half- and
three-halves order terms, was programmed on an analog computer.

6) Open- and Closed-Loop Simulation. The performance results and
comparison with the analytic prediction are presented. As with all
experiments there were some discrepancies. The source and resolution of

these discrepancies ig discussed.

( 24 )




7) Total-Cycle Simulation. With the system tota!ly at rest, a step
input was introduced into the system to establish the initial conditions
tested. Thig task identified adjustments to correctly model the
initial-value problem.

8) Final Configuration and Performance Evaluation. The lessons
learned from the total-cycle simulation were applied to an initial-value
configuration. The final results are discussed.

This section provides a general functional description of the
procedures used in each task without going into a detailed step-by-step
degcription of the equipment configuration and operation. Learning to
operate the equipment correctly required a significant effort during
this research. Therefore, where appropriate, references are made to
Appendix F which contains a detailed description of the equipment
configuration and operation.

Circuit Degign and Fabrication

For this application a half-order differentiating Oldham-Zoski
circuit will be designed and fabricated. Appendix E details the method
of determining the component values listed in Table 1. This circuit is
shown schematically in Figure 3. Resgistors and capacitors within 2% of
the design valueg listed in the table were used. This is consistent
with the Oldham-Zosgki article (17:35). A photograph of the completed
circuits is shown in Figure 4. The as-fabricated component values are

also listed in Table 1. These are not off-the-gsheli values, but were

( 25)




obtained by serial and parallel combination of discrete components.
This was necessary as the design values were not commercially available.
Trial and error combinations of components were evaluated until a

combination within 2% of the degired value wag obtained.

ERERS RSN TT R

- SYEWR wERUeY wvevew -'t':l

veeew wveew -- -

Figure 4. Oldham-Zoski Circuits Constructed

on Breadboard
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After completion of component selections, the combinationg were
placed on an E&L Instruments Elite 1 circuit board and rechecked to
ensure the values matched the measured values. This gtep is highly
recommended because several combinations were determined to be outside
the tolerance limits when installed. Two circuits were built, Circuit 2
was designed and fabricated with twice the capacitance and half the
registance of Circuit 1. Circuit 1 was used to provide the half
derivative, and Circuit 2 provided the three-halves derivative in the
analog simulations.

Circuit Performance Evaluation

The simplest criteria to apply in identifying a fractional
derivative of order one-half is its Bode plot. A gain of 10dB per
decade and a constant phase shift of 45 degrees characterizes a
half-order derivative (18:226). Experimentally determining a circuit's
Bode plot requires a sine wave generator, a recording or display device,
and a counter/timer. The method employed connects the output of the
Tektronix function generator (model FGS06) to the input of the circuit
under test. The output of the circuit under test is connected to either
a Hewlett-Packard Analog/Digital recorder (model 7090A) or a Tektronix
ogcilloscope (model SC504); a Tektronix counter/timer (model DC509)
is connected to the output of the function generator. The output voltage
is then compared to the input voltage, and the gain is calculated.

The gain at a given frequency (w) is given by:

(31

(o]

output voltage
W = constant

Gainl = 20 log‘
i nput voltage

(28)




The phase shift is calculated by determining the time interval (tps)
between the t-axis crossings of the input and output voltages and
comparing it to the total period (T) of the sine wave as illustrated in

Figure 5.

Phase Shift (deg) = [ ‘e ] (32)

This procedure is repeated for a number of frequencies in the
performance range of the circuit. The data was then plotted, as
illustrated in Figures 6-9 , and the glope of the gain plot and the
magnitude of the phase plot are compared to the 10dB/decade gain slope
and 45 degree phase shift criteria. A detailed equipment list and test
procedure is contained in Appendix F.

Experimental values of 10 ¥ 1 dB/decade for the gain and 45 * 5
degrees for the phase shift were established as the initial pass/fail
criteria for the circuit. These values were a first attempt at
establishing such a criteria. Since both circuits tested satisfied this
criteria and performed adequately on the analog computer, these

parameters appear to be a valid performance criteria.

( 20)




[{ J

suajaweue4 uOT3BINATE) 9seyd 40 ardwexy -G 3unbi

Y
51

!
:

pU——

YU

i
t

f— H
7.

A B R

VA

L. :|‘:Jﬁ|.ll4. b J,A/I! .

= - EeBEZD ‘0 ‘Av2b 0
{

ﬁ.u.?.

U | N VN SN U NPT S SRS SN SU W
T -+ :

: ‘_ ..fllwl,l
AOZ ° mwom—o/o.> "€

b e p — e ]~ (U (U SR H [RURIN NI UpR WPSpIOT SN SR URIUUNIS SIS S ST S

( 30)




®
¢ ~10~
]

—154

e .
—204]

®
|
N
w
1l

.

N\
m
O .
~—r .
— 30—
z
D
© -359
— 404
—45-
~50-

S
T T T
3 { 2

N4 -

f
|
i
T
2

I !
T
]

0.1 1
FREQUENCY (HZ)

Figure 6. Circuit | Gain Characteristics

( 31)




|
®
90 -
® 803 1
~707
O n
b
° £.60-
Eﬂ p
(350; . .
=z N * I - —
° < 40
L -
D
I::'JO-:4
a. -
—
20 1
10
X -
0 li'lnl 1 T;Tflhf é T l{xrrﬂ . UBRRRLY !

0.01 0.1 1
FREQUENCY (HZ)

Figure 7. Circuit | Phase Angle Characteristics

(32)




.- —— - it s e N
. ul,lllr- e . O
i it s
l'l—l[\[‘»‘a‘l'ld‘l‘ —
e e S
— xw e —— 4. Ws
- -
- o

H
1

FREQUENCY (HZ)

i
LR

=

- A el

- O
Cv
: o

i -

E Q

e e ; oot S F o
...... 1 S R i S M SR

T 11T rJrrrr|yrrrr|rrrryryrrr|rryrrrirrryjirrrir

o Tp) o o] o o) o 0 o
| — - N ™ M Ju <
_ ! _ _ _

(gp) z_<o_

(33)

Figure 8. Circuit 2 Gain Characteristics
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Circuit Gain and Adjustment for Analog Simulation

The change in gain and phase of the differentiating circuit's
output arises from the mathematical definition of the steady-state
derivative of a sine function:

v v (33)

— (A 8in wt) = Aw [gin(wt - v 2)]

at”
When the input amplitude is unity, the magnification factor of the
output amplitude with regards to the input amplitude is g which is a
function of the frequency. If the Oldham-Zoski circuit is to function
as a true differentiator, this amplitude magnification factor at w = 1
rad/sec must be 1° = 1. Figure 6 and Figure 8 show clearly that this
is not the case for either of these circuits. Therefore, both circuits
must be combined with operational amplifiers to ensure that the gain
plot has a value of zero dB at «w = ]| radian/sec.

The Oldham-Zoski article defines relationships for the
amplification required for a given circuit design (17:30). For Circuit
1 a gain of 26.53 (pure number, not dB) was predicted; the gain fér
Circuit 2 was 13.54. To realize this on the analog computer, two
amplifiers with gaing of 10 and a potentiometer in serieg with each
half-order circuit were required as shown in Figure 10. More
information on the gain calculations for each circuit ig contained in

Appendix E.

(35)
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Figure 10. Operational Amplifier and Oldham-Zoski
Circuit Combination for (Jiy)

Half - Order Circuit Analog Performance Evaluation

Theory does not always match real life, and verification of the
gaing was required prior to gimulating a second-order system. A sine
wave with @ = 1 radian/sec wags used to perform the verification. A
harmonic ogcillator was programmed with a frequency of 1 radian/sec
(see Figure 11 and reference Appendix F for details regarding the
programming of a harﬁonic ogcillator on the analog computer) . The
oscillator’'s output served ag the input to the half-order circuit being
evaluated. The input amplitude and the output amplitude were plotted
using the Hewlett-Packard A/D recorder ( model 7090A - see Figure 12). A
comparigon is made, and adjustments, if necessary, are determined by the
relationship:

(34)

actual output amplitude 1

input ampli t ude " adjustment factor
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D0 X )

Figure 12. Amplitude Validation Circuit Using
Harmonic Oscillator

The initial potentiometer setting for the half-order circuit
was modified by multiplying its value by the adjustment factor. The
process was repeated until the adjustment factor was approximately one.
An example of this process is depicted in Figures 13 and 14.

Although the circuits are tuned to perform correctly at w = ]
radian/sec, their behavior at other frequencies requires evaluation. As
a check, the frequency of the harmonic oscillator was changed to w’= 3.5
radians/sec. From Eq (33) the predicted magnification factor for the
output amplitude at thig frequency should be (3.5)%7¢ or 1.37. Figure
15 shows the experimental result of 1.35. The combination of this
check, and the original circuit validation, bolstered confidence in the

half derivative circuits prior to attempting the analog simulations.
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It would be desirable if both the 1.2 and 9-2 derivatives could be
obtained by uging a single half-order circuit. Using the Oldham-Zoski
circuit to differentiate the » signal to provide D:/z(x), and then
connecting the Df/z(x) output to a full integer integrator should
produce the D:/z(x) signal. All analog integrators are checked at the
factory to ensure their output falls within a range that matches the
performance of the others. Uging only one half-order circuit to
provide the signal for both D:/z(x) and D?/z(x) eliminates concerns with
performance matching two half-order circuits. To test this concept the
harmonic oscillator was tuned to w = 1 radian/sec, its x gignal was
differentiated to obtain D:/z(x), then integrated to obtain D:’z(x).
This circuit configuration ig pictured in Figure 16, and the results are
plotted in Figure 17. The peak-to-peak amplitude for each cycle is
correct, and the phase shift ig also correct. However, there ig an
underlying ramp in the signal, indicating a bias voltage exists in the

0272 (x) gignal. Several posgible causes were identified, (gee Section

t
V) and fixes were implemented. Even then, the ramp could not be
totally eliminated.

Incorporating a second half-order differentiator to produce D:/z(x)
from the x (displacement) signal solved much of the problem. With the
system configured as shown in Figure 18, the D:/z(x). %, and D:/z(x)
signals are shown in Figure 19. The proper relationships now exist.

Section V includes a discusgion of the problems associated with using

a gingle circuit to produce both fractional derivatives.
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Fractional-Order Equation Synthesis

The EAIl analog computer (PACE,model TRGHB) depicted in Figure
20 iz a solid-state second-generation computer. Components available
for patching into simulations include operational amplifiers capable of
summing, inverting, multiplying, and integrating; potentiometers for
precision multiplication; comparators for switching logic; function
switches for applying various input (forcing) functiong; and a digital
voltmeter for readout purposeg. Each component has input and output
jacks which accept patch cords with banana plug terminations (see Figure
21), permitting interconnection of components for modeling a variety of
aystems. Appendix F containa detailed descriptions of these components

and their usgses.

—— o

Figure 20. Pace TR48 Analog Computer
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Figure 21. Patch Cords and Input Jacks

A general gsecond-order differential equation containing half-order

derivatives can be written as follows:

mx + ¢ D320 + e s c PR 4 kx = ult) (35)
where

m = gystem masgs

c, = viscous damping coefficient

k = gystem stiffnes coefficient

e, = vigcoinertial damping coefficient

e = viscoelastic damping coefficient

u{(t)= gystem control or forcing function
The ;. x, and x terms are acceleration, velocity, and position. The two
additional terms, D:/z(x) and D:/z(x), are respectively, the

three-halves and one-half derivative of position with respect to time.

( 48 )




Eq (35) can be rewritten such that the acceleration ig a function

of the other terms:
' -1 a2 . 1/
X = m [f(t) e D7 ) - cx-cp, 2x) ] (36)
The three-halves derivative can be obtained by differentiating x

or integrating x by order one-half, and is mathematically defined in

the time domain:

s d-lfz[;(-(t)] r 1. _f. .\ e
D.-z -(x) = = r( ‘/,.2 - M x( T) (t— .n ars a T
t a2 l J JC
+ D7 %(x(0)) (37)

Likewise the one-half derivative can be obtained from either x or

x, and it ig defined as:

t -1/2

-4/2 . t
0*2(y) - d Tk [l"(uz) ]-1 J- “n (-1 Y3
dt C

‘ D:/z(x(O)) (38)

The initial conditions on both fractional derivatives are
identically zero according to Bagley (12). The other three time-
dependent quantities in the equation:

t

X = J”;;mdr + %(0) (39)
C
t

X = Ii(T)dT + %(0) (40)
C

and f(t), an arbitrary time-dependent forcing function which is

produced in a geparate circuit on the analog computer.

(49 )




In addition all terms in Eq (35) can be written using X

1
X = m"{fm - ci[ (12 ]" [ x(v -2 -1
C

t
- cz[ j;é(r)d-r + ,2(0)]

C

t t
+ %[ (12 ]"of[ofx(r)dn *(0) ](t-ﬁ"/’dr

-k _rt[ [snar + ;((o)] dr (1)
o o
This form of the equation motivates modeling this second-order

gygstem on the analog computer. That ig one operational
amplifier acts as x and is a summer into which all the other terms serve
as input. The output of x ig then connected to an integrator, which
produces as its output, x. This output is then connected to another
integrator, and its output is x. Use of a half-order fractional
differentiators can produce the D?/z(x) and D:/z(x) ag previously
explained. Thus, all the terms necessary to produce x are available and
the output of the system (x) can be directed to a display or recorder
for observation. A schematic representation of this circuit is found in
Figure 22.

It should be noted the operational amplifiers on the model TR48
are inverting amplifiers. That is the output of the amplifier has the
opposite gign of the input. For example, when x is put through an
amplifier configured ag an integrator, the output ig - x instead of x.
To obtain the correct gigns, both the D:/z(x) and % gignals must be

passed through inverters to obtain the correct 3ign.

( 50)
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Each operational amplifier on the TR48 has four input jacks; two
are unity-gain jacks and the other two amplify the input signal by a
factor of ten. These factor of ten jacks will hereafter be denoted xl10.
To provide the correct coefficients (cy c, Cg and k) the output

signal for each derivative term must be connected to a potentiometer

(Figure 23).

___;>
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-
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L

Fiqure 23. Potentiometer Schematic

and Circuit Symbol
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Each potentiometer is adjustable in $1-1000th increments to
provide a specific fraction of the amplitude of the input signal. For
example, if c, were 0.2500, the output of the three-halves derivative
would have to be connected to a potentiometer set at 0.2500. However, if
c, were 1.2500, the three-halves derivative would have to be connected
to a x10 input jack on the X summer. Specific details for establishing
the proper signs and magnitudes of the coefficients are presented in

Appendix F.

Open- and Closed Loop Simulation

The first task was to determine a set of coefficients that would
result in frequencies within the operational band of the half-order
circuits on hand. At the time the coefficients were developed, the
circuit designed by the continued fraction method was the one under
consideration. This circuit had a frequency range spanning 0.05 to
0.40 Hz. This range was then evaluated to determine a set of open-
and closed-loop coefficients compatible with the circuit’'s performance.
The equation developed was:

x + 2D, %(x) + x = u(t) (42)
where u(t) is the control force (zero for the open-loop equation).
It should be noted that this criteria is consistent with the
Bagley-Torvik model for a viscoelastically-damped structure which has a
stress-strain relationship modeled by the addition of a half-order term

(13:137).
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Ugsing the linear quadratic feedback theory developed in Capt
Walker's thesis (6), the optimal feedback for this system was determined

to be:

u(t) = 1.6324 D} "%(x) - 2.801 % + 3.1566 D, *(x) - 0.4142x  (43)
resulting in the closed loop equation:
X - 1.6324 Df”(x) + 2.891 % - 1.1556 D:/z(x) +1.4142x = 0 (44)

Figure 24 illustrates a schematic for the open-loop equation, and Figure
25 depicts the schematic for the closed-loop equation.
The inttial condition on x for both the open- and closed-loop

cases was originally set at 2.5, volts and in the final stages of the

experiment, it was set at 2.0 volts. Stepping down the -10 volt reference

voltage on the attenuator module, through a potentiometer, then into the
IC jack on the x operational amplifier established this initial
condition. This voltage acts as the initial disturbance for studying the
response of the system. Again, referencing Figures 24 and 25, both
half-order circuits are isolated from the initial conditions by
comparatorg. When the "OP" button is pushed to start the simulation the
comparators connect the input to the one-half and three-halves-order
circuits. This was accomplished to conform to the necesgary initial
conditions established by Bagley for all fractional order derivatives

(12). The analog computer was operated according to the detailed
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description discussed in Appendix F, and the output is recorded on the
Hewlett-Packard recorder (model 7090A). Figure 26 is a sample output;
it illustrates the x response for both the open- and closed-loop

systems.

ey

10 0.1% | —< )

Figure 24. Open-Loop System with Comparator Isolation
of0dx) Input
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Two theoretical methods for predicting the open- and
closed-loop responses were developed in parallel with the experimental
effort. One method involved Laplace transforms, and it is detailed in
Appendix A. The other uges a Miitag-Leffler expansion in the time
domain, and it is detailed in Appendix C. Both methods produced exactly
the zame response for the open- and closed-loop cases. Therefore, only
the Laplace transzform response will be shown for comparison (Figure 27
for the open-loop and Figure 28 for the closed-loop response). It is
easy to recognize the initial discrepancies between the experimental
regults and the theoretical predictions. In the open-loop case the
analytic methods predict a very heavily damped response that never
crosges the horizontal axis and approaches zero from above. The
experimental results crossed the horizontal axis, approached zero from
below and decayed rapidly. The same type of disparity was observed on
the closed-loop system. Although feedback made the system more
respongive, it became necegsary to resolve the discrepancy between
theory and experiment.

Total-Cycle Simulation

The previous con‘iguration modeled the open- and closed-loop cases
ag initial-value problems. This procedure starts with the system at
rest. By uging a function switch (described in Appendix F), a step

voltage wag applied to the circuit (Figure 29).
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The circuit undergoes a transient responge, eventually coming
to rest at a displacement value approximately equal in magnitude to the
size of the step function. This steady system state is nearly the same
ag that modeled in the original configuration by placing an initial
condition on x. The one difference in this case is that the
fractional-order derivatives are not isolated from their inputs.
When the function switch was toggled, the step function was removed.This
section of the response curve approximates the response modeled by the
theoretical predictions. The result of this total-cycle simulation is
shown in Figure 30. Figure 31, for the open-loop case, and Figure 32,
for the closed-loop case, represent the second half of the Total-Cycle
Simulation. The experimental regponse compares favorably with that
modeled by the initial-value problems. Section V (Analysis) draws
conclusions concerning the modifications required to the initial-value

problem configuration to more correctly model the initial conditions.
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Final Configuration Performance Evaluation

The final configurations for both open- and closed-loop initial-
value problems are pictured in Figures 33 and 34, respectively. There
are two changes made from the original initial value configuration.
Firgt, both half-order circuits are not isolated, but allowed to charge
their capacitors to whatever value is congistent with their input.
Secondly the x summer was isolated from its input using a comparator
(Appendix F) until the °"OP° button was pressed. Final results for both
open- and closed-loop cases are compared with the theoretical
predictions in Figures 35 and 36. The minor discrepancies are discussed

in the analysis section.

X(0)=2.0

A |
0
(FF_(1C)
|
_F :
_J 0

ON (0P

Figure 33. Final Open-Loop Configuration
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V. Analysis of Results

Introduction

This section deals only with anomalies and unexpected results
encountered during the research. Tasks which closely matched
theoretical predictions are covered in the conclusion section; it is
sufficient tc state they functioned as expected. The discussion is
divided into three partsg; problems in the circuit validation, problems
with simulation results, and disadvantages associated with using the
analytical tools. 1In each area, the problems are defined, pogsible
causes l.sted, and solutiong presented.

Circuit Validation

The voltage level output from the Tektronix function generator was
not constant over the frequency range tested. At low frequencies, (0.05
Hz) the output voltage was several volts lower than at higher
frequencies. The function generator is designed to terminate into a 5002
impedance load. The Oldham-Zogki circuit impedance ig much higher than
thig, especially at low frequencies where the majority of the current
pagses through the resistors. By placing a 500 resiastor in parallel
with the circuit, the impedance remained cloge to 50Q . The variation

of circuit impedance with the frequency at which the circuit was tested

wag not observed to adversely affect the performance of the test
configuration. Slight diiferences were noted in the start-up transient

regsponge of the input and output signals as a function of frequency.
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These trandient characteristics are repeatable for a specific circuit
and frequency. In addition, the amplitude of the input signal remained
between 8.00 and 8.10 volts for all frequencies tested (Appendix G
containg the circuit verification data). These slight variations were
judged to be acceptable.

When using the oscilloscope and counter/timer combination to
determine magnitude and phase angle, the results were not
repeatable to the accuracy desired (%] dB/decade gain slope and *5
degrees phase ghift). The slope of the Bode magnitude plot would vary
from 9.1 to 11.25 dB/decade, and the phase angle varjed from 37 to
43 degrees as a function of frequency. The oscilloscope was not
capable of tracking the output of the fractional order circuit using
just one magnitude range. Constant adjustment was required. It became
necessary to check the adjustments twice at each frequency to ensure
that the controlg had not been bumped when changing from one channel to
the other. The trigger control on the counter/timer which is tuned to
detect a signal crossing through the zero voltage level was extremely
sensitive. Because cf the need for frequent adjustments, the confidence
in these results wag low.

It became necessary to attempt verification of the circuit
on the analog computer. The three-halves derivative functioned correctly
on the analog, when implemented. The phase was approximately 43
degrees, and the magnitude could be adjusted correctly. However,
running the output of the three-halves derivative through an integrator to

produce the one-half derivative produced the sinusoid-ramp combination

(71)




illustrated in Figure 17. The peak-to-peak amplitude of the sine wave
had the correct magnitude, but the underlying ramp function indicated a
bias voltage at the input of the operational amplifier.

The source of the bias could not be readily identified. With
visual observation of the phase and magnitude, it was impossible to
determine small biases on the output signal or to obgerve the transient
adjustment of the circuit to an input signal. To further complicate
matters, the original method of connecting the fractional-order circuit
to the operational amplifier was accomplished by inserting a banana plug
directly into the summing junction of the aperational amplifier. This
procedure avoided adding resistance to the circuit by connecting into
one of the input resistors of the operational amplifier. When the
gignal passed through the operational amplifier, it produced the
extremely noisy output signal illustrated in Figure 37.

Many possible causes were identified with the original circuit
configuration. First, there was concern with the manv potential sources
of stray voltages and inductances. The operational amplifiers were not
commonly grounded; this situation enhanced possible ground potential
biagesa between components. The long patch cords connecting the circuit
board to the analog computer passed in close proximity to the analog
computer's power supply. The long leads on the discrete resistors and
capacitors were not trimmed, regulting in a circuit similar to that
depicted in Figure 38. These itemas were corrected by grounding the
circuit board and operational amplifiers together, trimming component

leadg g0 that the components were flush-mounted to the circuit-board,
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Figure 38. Long Leads on Discrete Components

and using coax cables to connect the circuit-board to the analog
computer. Reducing the final resistance value in the half-order circuit
by 10K and patching its output into a X10 input jack (10K resistance)
on the operational amplifier, instead of the gumming junction, eliminated
the noigy gignal.

The most significant change was the use of the Hewlett-Packard
analog-digital recorder (model 7090A) It eliminated problems associated
with the atart-up trangient. Appendix G contains the plotsz of the
circuit validation; the start-up trangient is seen to be smooth with no
digscontinuities. The analog-digital recorder greatly simplified data
collection and analygisg; set-ups became routinely simple, and digitized
valueg of interest on the output plot could be annotated directly on the

plot through the use of a built-in routine.
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The method of supplying the one-half derivative wag altered to
eliminate the ramp. A second half-order circuit was constructed with
capacitors having twice the value of the capacitorg used in the first
circuit and resistors having half the value of those used in the original
circuit (the time constant remaining the same).

The performance comparigsons of the circuits produced an unexpected
regult. When second-order effects are congidered, a capacitor is
modeled as a lossless capacitance in parallel with a resistance (19).
When combined into a typical Oldham-Zoski cell, the second-order model
then has a capacitance in parallel with two parallel registances. One
would predict the circuit with the lowest capacitance to be the circuit
with the best phase characteristics. Comparison of Figures 7 and 9 show
this ig indeed the cage. When degigning future circuits an effort
should be made to make the capacitor values as small as feagible. The
use of an impedance bridge to measure the "quality” of the capacitances
is algso recommended.

The circuit produced a phase angle of 43 degrees when connected
to the analog computer, but only 37-38 degrees when measured by tha
ogcillogcope and analog-digital recorder. Examination of the input
circuitry on the analog-digital recorder showed a 1M resigtor connected
in gerieg with the input. To correct this gituation the circuit was
connected to ground, instead of connecting the half-order circuit
directly to the input of the recorder. The recorder was then put in
parallel with the last registor of the half-order circuit. This

configuration produced a phage angle of 43 degrees.
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Finally, the ramp in the one-half derivative that resulted from
integrating the three-halves derivatives requires analysis. With the
Hewlett-Packard analog-digital recorder, small amplitude biases were
observed in the output of both half-order circuits. The input from the
function generator was also observed to be biagsed. It appeared this was
the reason for the anomaly. A closer evaluation proved differently.

For example, in the validation plot (Appendix G) for Circuit 1 at

f = 0.1451Hz (= w = 1), the ratio of the input amplitude (peak-to-peak)
to the output amplitude is 63.32. However, the ratio of total offset
is:

[ | positive peak | - | negative peak | ]

INPUT = 29.85

[ | positive peak | - | negative peak | ] (45)
OUTPUT

This analysis indicates only 0.0025 volts of the bias is attributable to
the input bias, while the total biasg is 0.007 volts. Using this rough.

first-order method, the actual biag voltage of the circuit is:

0.007 -~ O.0023 (46)
> = 0.00225 volts

The gain of Circuit 1, when connected to the analog ig 25.6. This should
result in ar actual biag on the output of the differentiator of 0,060
volts. This value ig small when compared with the 2.0-volt initial-
value, but when integrated over time, this value would produce a
gignificant ramp. The actual calculatiun of the bias voltage required

to produce the ramp observed isg:
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®
| J
[(‘5.::'?792.00) .] = -0.013 volts/sec wo
® The bias observed was actually much less than that predicted by
this first-order method. It is noted that Circuit 1 ias biased positively
while the one-half derivative exhibits a negative bias. The operational
® amplifiers involved are inverters; therefore, the bias does have the
correct sgign.
Does this bias affect the simulation, and is it an error that
Q increagses with time? The output of the one-half and three-halves

derivatives is connected to the gsummer and results in an amplitude error
of the opposite gign of the particular fractional derivative; that is
x = -D?/z(x) - D:/z(x) + ... . If the one-half derivative is larger
than nominally predicted, and it should be, then x ig slightly smaller
than it should be. Thus x is smaller then it would be if the bias was
not there, and the same argument applies to x. When x is differentiated
by the fractional-order circuit the result is a slighty smaller D:/z(x)
input, compared to the case where the bias was not present. In other
words, with feedback, the error is stable and does not grow with time.
Upon completion of the second fractional- order circuit design, the
circuit was connected to the harmonic oscillator for an amplitude check
with ® = 1 radian/sec. The harmonic oscillator's output amplitude was

not stable, and decayed with time. The first thought was to remove the

fractional-order circuit to see if it might be the cause. With this

done, the amplitude continued to decay. Three new operational

1)




amplifiers were selected, the circuit was rewired, and the problem
persisted, indicating it was not an operational amplifier problem. A
second analog computer was placed into service, thinking the power
supply was bad on the first unit, but the decay still continued. It was
then noticed that everytime someone used a computer-printer in the room,
the voltage would experience a step-function loss of amplitude. Waiting
until the demand decreased on the electrical supply circuit before
operating the analog computer solved the problem. The whole analog
computer functioned better; the potentiometers were not as noisy and
easier to set. The operating schedule was shifted to occur late at
night when the electrical supply was more stable.

Open- and Closed-Loop Simulation Problems

Figure 26 shows the initial open- and closed-lcop responses obtained
experimentally. Figures 27 and 28 depict the results predicted for the
simulation by the Laplace transform method. The frequency, amplitude,
and axis crossings vary gignificantly from that observed experimentally.
A second Laplace transform prediction was made (Figure 39), deleting the
5—1”2 terms when transforming the half-order derivatives (see Appendix
A). This response was a almost entirely due to the regidue, there was
very little contribution from the integral along the branch cut. The
result was in close agreement with the experimental data, however, it

did not agree with the initial-value problem work reported by Bagley

(12) which required the s-‘/2 terms.
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The firgt thought was that the circuit and experimental methods
were incorrect. The second thought was that the s-i/2 terms in the
Laplace transform method were invalid. After looking at several
possibilities, it appeared that the problem centered on the method of
applying the initial condiiiore® and an understanding of the definition of
a zero initial condition on the half-order circuits.

Two specific applications of initial conditions were in question.
During the gain evaluation phase a decision was made to isolate
the one-half derivative’s input until the "OP" button was pressed.
Figure 40 shows the response of the one-half derivative when not
isolated. It appears to require four or five cycles to adjust to the
correct amplitude. Comparison of this response with that of Figure 41,
in which the one-half derivative was isolated with a comparator, led us
to believe that a zero initial condition on the half-order circuits
meant isolation. When isolated, the one-half derivative attains the
correct amplitude in one cycle. For this reason the decision was made
to isolate both the three-halves and one-half derivatives. Secondly,
when a system ig at rest at some displacement value, it is expected that
the acceleration would be zero. In the gimulation, the x initial
condition of 2.0 volts appeared as -2.0 volts at the summer, indicating
the system was not at rest.

Two test cases were devised to address the problem. In both
cageg, the initial digplacement was set to zero. 1In the first case, a
harmonic oscillator with w = ]1.585 rad/sec served as the input to the x

summer as a forcing function for the circuit x + x = 0. The one-half

( 80)




derivative wag connected to the displacement (x) output. The response
of the one-half derivative and displacement were recorded.

If a 45 degree phase lag and an amplitude of (1.585)1/2 was observed
for the one-half derivative, the circuit was working correctly. After one
complete cycle, this was the case (Figure 42). Thig test verified the
circuit and methods used; therefore, the initial required further
investigation. The comparators were removed from the half derivatives
and x(0) was set equal to zero. The "Total-Cycle simulation”, as
described in the Section IV, was then run. Figures 30 and 31 are
examples of this procedure for the open-loop system and Figure 32 is an
example for the clogsed-loop. On cne of the runs the "HD" (hold) key was
used to hold the values of the displacement (x) operational amplifier at
the upper stationary position. The summer value displayed on the
Digital Volt Meter (DVM) at this point was 0.0000 volts. With the
circuit still on hold, the function switch was then opened, the value of
x changed immediately to the negative of the value of the step function.
The ‘OP° button was pressed and the circuit duplicated the second halr
of the total-cycle simulation. Armed with this information X was
isolated from all inputs until pressing the "OP" button closed the
comparator contacts. Neither of the half-order circuits was isolated.
The circuit was reconfigured so the initial condition was again applied
through the IC jack in the x operational amplifier. Figures 35 and 36
depict the final experimental/analytic comparisons for both the open-

and closed-loop gimulations.
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It appears that to function properly in an initial-value
problem simulation the capacitors in the fractional-order circuits must
be charged to a voltage consistent with the initial value of their input
signal. 1If the initial value of the input to the half-order circuit is
zero, zero initial voltage on the half-order circuit is congistent. 1If
the initial value of the signal input to the fractional-order circuit is
other than zero, then the initial voltage of the circuit must assume a
voltage consistent with that input voltage.

There was a small, apparently constant, displacement in the
experimental value when compared with the analytical results. If the
absolute value of the displacement varied ag the ratio of Caq to k in the
equationg, it would indicate a relationship between the displacement and
one-half derivative. However, the magnitude of the displacement does
not seem to vary from the open-loop to the closed-loop situation; it
only changes signs. When not isolated, the D:/Z(x) initial value isg
0.143 volts in the open-loop case and 0.135 volts in the closed-loop
configuration. The net displacement between the experimental and
analytical results is approximately 0.07 volts. This value is nearly
the same magnitude as the circuit bias, but if the bias is the cause,
the value of the displacement should change by a factor of two due to
the change in Cq- However, the OZ circuit is only an approximation to
an s‘/z transfer function over the frequency range of its degign.

Therefore, the long term accuracy of the circuit igs dependent on its
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lower frequency limit. Consequently, the results observed are likely to
be the best possible for a circuit with this set of design parameters.
These displacements, in both cases, make the circuit more responsive and
approach zero faster than predicted.This anomaly will be left as an open
issue for follow-on research.

Theoretical Tools

Mittag-Leffler Expansion (Appendices C and D)

The program MITLEFR.DAT, an executable file in Matrixf:
expands the roots of the characteristic equation in an infinite series
to provide the response of the open-and closed-loop systems in the time
domain. For this case the solution was obtained for a second-order
system involving multipies of the half derivative [x,D:/z(x). X,
D?/z(x)]. However, it can be used to expand a gecond-order equation
made up of any 1/nth fractional-order terms by entering (N = 2xn) when

prompted. Input parameters are upper and lower time limits for

calculation, actual response start time, coefficients of the

172

differential equation, and initial conditions for x, "c,Dl

(x), and

Da/z(x). The method is effective for approximately 15 seconds from the

t

time the response starts. For extended lengths of time, the number

of terms required to obtain convergence of the expansion becomes
excessive. For example, it required 2 hours of run time to evaluate 100
points uging 200 terms in the series for the open-loop system. It

required nearly the same amount of time to evaluat:z 50 points using 400

terms in the closed-loop case
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Laplace Transform (Appendices A and B)

The program RESPONSE is written in Fortran and performs a
contour integration in the complex plane to calculate the time response
(20:818-824). The current method requires manual calculation of the
residues. In addition, asymptotic approximations to the integrand must
be made to simplify the inversion process. Figure 43 shows a comparison
of five different selections for the asymptotic limits. Three of the
five trials required twenty minutes of computational time; the other two
required two hours.

The results of the five trials are remarkably close, yet the
processing time can be increased unnecessarily by an improper selection
of limits. Each time an analysis is accomplished for a differeat set of
coefficients, the equations for four derivatives of three functions must
be ingerted into the proper function routine in the program. The
supporting function routines must be recompiled and then linked with the
main program for each specific set of equation coefficients (m,ct,...,
cn,k). The Laplace transform method is not limited with respect to
time. If it is necessary to characterize the entire response of a
gpecific gystem, and that system's response lasts longer than 15
seconds, the Laplace method is viable. However, the Laplace transform
method is limited with respect to responses which have Laplace
transforms.

Additional Commments - Deciding Which Method to Choose

Figure 44 shows a comparison of the two methods; they are identical.

For initial characterization of a system the Mittag-Leffler should
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be used since it's easy to implement. For extensive time-domain
analysis the Laplace transform method is preferred.

Why use the analytic tools, if the analog computer is available?
It was the Laplace transform method which identified the problem with
invalid initial conditions. Figure 45 illustrates a preliminary analog
simulation of the closed loop-system. The sign on the three-halves
derivative was incorrect. Had it not been for the analytical
prediction, this situation would not have been identified. In the
future, if someone develops a generalized Laplace transform method that
solves the problem in terms of the coefficients (m,k,....cn), receives
them as input parameters, and then calculates the residues, the solution
for a given system could be available in twenty minutes. This tool is
probably quicker than the analog simulation technique. However, both
analog and theoretical methods have special tasks that they’'re more

efficient at. It’s best to improve both methods.
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Figure 43. Comparison of Asymptotic Limit Selection
for the Laplace Transform Response Method
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VI Conclusions and Recommendations

Summary

This thesis demonstrated that analog simulation of differential
equations involving fractional-order derivatives can be performed.
Fractional-order feedback in linear systems is feagible, and the response
is predictable with computer methods. This feedback is stable and
improves system performance. The methods developed are directly
applicable to systems whose behavior can best be described by fractional
derivatives. These methods could provide additional degrees of freedom
for control engineers to improve system performance (12). With
the additional fractional-order time derivatives available for feedback,
response can be tailored to precisely fit the needs of the application
without a loss of system stability.

The Oldham-Zoski circuit provides the 1-nth fractional derivative
of an input signal. Previous research indicated the circuit functioned
for congtant and ramp input signals, for any fractional integral cr
derivative. This investigation demons.rated that this circuit also
performs with a sinusoidal input. Therefore, it is anticipated that
general fractional-order circuits can be designed and fabricated to
cover the frequency range and functional type required by a specific

application.
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The circuits designed and fabricated can not only function as
tools to simulate processes involving fractional derivatives, but they
can also be used to modify traditional sensors for active control
systems.

Two analytic tools were developed to predict the experimental
regponse. Fully functional computer programs were developed for both
methods. Even though the two methods were totally unrelated, the
results generated were indistinguishable. A high degree of confidence
is merited for these analytic tools as they not only described the
respongse, but they alsoc pre‘icted it.

Areas for Further Study and Development

1) Perform simulation and feedback including higher orders of
fractional derivatives as well as the one-half and three-halves.
Compare the response to the results pregented here. Invesgtigate if
the added degrees of freedom produce better system response.

2) Electrical circuit development. Investigate designing
and fabricating the fractional-order circuits using current IC methods.
Determine if the circuit bias is inherent in the design or can be
removed. If it can be compensated for, a single fractional-order
micro-circuit could supply the 1-nth and n+t nth derivative. 1In addition,
define interface requirements for the circuits, that is power consumption,
impedance matching, etc. If added degreesz of freedom are beneficial,

determine the number that can be designed into one integrated circuit.
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3) Investigate the steady-state offset of the experimental values.
Determine if a designing a circuit for operating at lower frequencies
produces an improved steady-state response or if the steady-state offset
observed was a function of the initial charge on the capacitors. One
possibility of testing for thig is to run a simulation with a higher
initial charge on the capacitors, and then observe the results.

4) Continue development of the Laplace inversion program.

Automate the calculation of residues. Solve in terms of general
coefficients (k.m.ct, ...,cn); use the general coefficients ag input to
the function routines.

5) Combine the circuit with an active control system and logic to
control the response of an actual structure. One possibility - see if
the AFIT/ENG (Department of Electrical and Computer Engineering) robotics
laboratory is interested.

6) Investigate the practical limits of frequency range available.
Determine if a circuit designed to operate over two decades of frequency
functions as effectively over those two decades as one designed for six.

7) Within the design frequency range of the circuit the transfer
function's slope is 10 dB/decade with a 45 degree phase shift.

Determine the operating characteristics of the circuit outside its
design range.

8) Without scaling on the analog computer the voltage limits
restrict the magnitudes of voltage that can be used at high frequencies.
Regearch the necegsary modifications to the circuit for t* operating

times, where t*is a fraction of the actual time.




Equipment Improvements

1) A Hewlett-Packard, or similar PC, with an IEEE-488-bus
compatible interface card for connecting to the Hewlett-Packard
analog-digital recorder (model 70904). Data from the recorder could be
directly transferred to the PC for analysis. Likewise theoretical plots
could be done on the recorder. The Hewlett-Packard recorder (model
7090A) has additional capabilities when it is interfaced with a PC than
it has in its stand-alone mode.

2) If it is determined to still be more desirable to use discrete
components, obtain a supply of 1% components.

3) Investigate the use of the AFIT Department of Electrical
and Computer kngineering (AFIT/ENG) hybrid analog computer (SIMSTAR).

It is the latest model available, can be programmed through a terminal
using Fortran - as opposed to using patchcords, and has an interface for

external circuitry.
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Appendix A
Laplace Trangform Method for Theoretically Predicting Time Response

A general second-order equation for a viscoelastically damped

system can be written:
“ a2 . 1/
mx+ ¢ D75 +ex v e p i Rx) 4 kx = £(1) (A1)

where ;, %, and X represent acceleration, velocity, and position.
D?/z(x) and D:/z(x) are the three-halves and one-half fractional
derivatives. These fractional derivatives aid in providing simple,
causal models of the behavior of analytic systems (2:125-126). ( mx

is an inertial term, c_x is viscous damping, and kx is stiffness.

2
Therefore, Df/z(x) can be defined as a viscoinertial damping term, and

D:/z(x) as a vigcoelastic damping term.)

Open-Loop Example Case
For an example case, let us examine a model of a typical

viscoelastically damped system;

1 2 3
x + 2D, 70(x) ¢ x = 0 (A2)

The initial conditions are:
x(0) = A and x(0) = 0 (A3)

To solve the differential equation, transfer it to the Laplace domain.

Integer-order derivatives transform as usual, but fractional-order
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derivatives transform slightly differently. The mathematical definition

of an m/nlh-order derivative contains an integral expressgion:

t

12 - - -1 x(t-1)
D, "(x) = (T(1-1-3] Ic—:;/z—df (A4)

and in the Laplace domain (12):

200 %0) = 7R - x(0)1 = 8% - s R0 (A5)
and the Laplace transform of Eq (A2) becomes:
s®R - as + 28" "R 248 e x = 0 (86)
and solving for X(g):
-1/2
Rig) = o & 128 ) (AT)
2 172
s + 28 + 1
To obtain the response of the system, one must calculate the
inverse Laplace transform of XR(s) (29:818-824,14:141-143):
~4 1 yrio ot
LR = o — [ Rse as (A8)
¥-im

Solving Eq (A8) involves integrating around a closed contour, with

Eq (A8) as one of the contours (Figure 46). Again, the 8*"% terms

make the solution technique glightly different than usual. Mapping the
denominator of Eq (A7) into the ;-plane. where ; = 8‘/2, permits the
characteristic equation to be written ;‘+ 2;+ 1. The contour integral
can then either be performed in the s‘/z-plane, or remapped back into

the s-plane (21:197-199).
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Figure 46. Contour Integral Definition for the
Laplasce Transform Method
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P,= -1, p,= -0.5437, p_ p 0.7718 *i1.1151 (49)

These are the poles, and are then mapped back into the g-plane by the

transformation:

20+ W

=y o+ iv (A10)
~2

= g

2 2 .
Ty - v + 2iv

>

Equate the real and imaginary parts:

o= u - vE w= 2iy (A11)

The poles in the 8 plane are now:

p,= 1.0, p 0.29561, pa'p—; ~0.64777 +il1.72127 (A12)
Normally, poles on the positive real axis indicate an unstable system.
However, in this case, they result from the ;-to-s mapping. These poles
originated in the area of the ;-plane which did not map onto the
principle sheet of the Riemann surface in the s plane. Their effect on
the system comes from integrating along the branch cut depicted in

Figure 46,

The mathematical expression for the regidue theorem is (20:818):

Residue W (A13)

u MN

=l MR R R N S

The Laplace inversion integral, Eq (A8), is represented by

integration along path 1. Therefore:

£ R ) = - [J' J' J' J' J' f] + ZResxdue W (Al4)

=1

The quantity on the left hand side of Eq (Al4) is defined by Eq (A7):

(99)
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X(s)eﬂ - A (s + 28 ) esl (A1S)
2 1/2
8 + 28 + 1
Wylie defines the residue (20:818):
Residue (pn)= R(p')‘ = lim (s - p ) R(g)e st (Al6)
R d pn n

The characteristic equation can be written in terms of its s roots:

2 1/2 1/2

s + 23 + 1= (s 2

2

s (s . 0.7718 + i1.1151)

+ 0.5437) (s ¥

v (s7%- 0.7718 - i1.1151) (A1T)

The residue at s = -0.6477T77+11.72127 is:

Py*
R(Pa) = L}’m(p; [ .

. -1/2 (—C. C47?7+11.72127> ¢
(2+C. G4777-11. 172127) A (8 + 29 ) e

1,2 12 12 _ 1,2 .
(@ + 1) (8 + C.5437) (8 -(.77168+1.1. 1151) (9 -0.7718~11.1451)
(A18)
The root at P, can be written in terms of its half-order factors:
(s + 0.64777-i1.7212T) = (s* % 0.7718-i1.72127) (2% 0.7718+11.72127)
(Al19)
This results in an expression for the residue:
R =1lim
(ps) > (p )9
-2 12 , (~O. G4777+11. 72427
A (8 + 28 ) (8 + 0.7718+11.1151) e
1,2 1,2 1/2 )
(8 +1) (@ + 0.5437) (8 -0.7716+1.1.1151)
(A20)
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o
In the limit, this expression becomes:
o -o.
R, = A (0.14467-10.1122) e O S4TTT [008(1.721278) +i sin(1.72127¢) ]
3
(A21)
When combined with the residue from the complex conjugate root at
@ -
s = p,* (-0.64777+i1.72127), the total system residue is:
R = 28 [ 0.14467 cos(1.72127¢) + 0.1122 sin(1.72127t)] e © %*77" (a29)

Which can be simplified even further through the use of phasor notation:

R = 0.73232 ¢ < """ c0g(1.72127t - 0.65966) (A23)

For the contour integral (again refer to Figure Al for the paths):

Along path 2, parameterize 8 = o+ iw by R exp(i®), where R = A P

and © = tan—l(w / 6):

L]
ds

R exp(i@) (A24)
iR exp(i@) do

The limits of integration are from 6 = o, where o= t,a;x1 (#/R) to m

and the integral can be written:

A I"(n exp(i€) + 2R %exp(-i6/2)] exp[Rtexp(i&) ] Rexp(i6)

- ido
2mi 2 12
(R (i8)]1" + 2 [R exp(i + 1
expi LA (425)
Let the integrand be denoted I, then:
=t I i
JiS) 48 2§ de (A26)
also
|R exp(i®) | = |R (cos® + isin®| = || (A27)
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-1/

IR 2exp(-19/2) | = IR-VZ [cos(& 3 +igin(6-3] | < B-i/zl

(A28)

|exp [R exp(i®t) 1| = |exp [ (Rcos®t ] [ cos(Rtsin®) + isin(Rtsin®)]]...

...= exp [R cos(t)] (429)

Employing Eqs (A26) - (A29), an approximation to Eq (A25) for large R is:

T 2 -1/2
A
- A BB (Reos(81)] 40 (430)
2zt o R + 2R + 1
Taking the limit as R » @ :
n -3/2
lim - A J (1_+ 21_‘3/2 —— exp [Rcos(6t)) d& (A31)
R+ 2 o401 + 2R + R

Examine the exp [(Rcos(8t)] term. For & = mr2 to 7, c08€ £ 0 and in
the limit the term goes to exp(-®) or zero. For a £ & £ m~2, the term
is approximately equal to exp(»t). As R becomes very large o = m-2 and

the integral can be broken into two parts:

T /2

lim - A [_f exp [Rcos(6t)] 4O + f exp (rt) de] (A32)
R O n-s2 n/2

In the limit, the integral on the left disappears because the exponent
ig negative. The integral on the right disappears due to the path
length shrinking to zero in the limit. Thus the contribution of path 2
to the integral is zero. A similar argument can be made for path 6.

On path 4, the radius, o, is shrunk to zero in the limit. Along
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the path of integration, s = o+iw can be parameterized by o and 6:

o =00 Wt

® = tan '(w / o
8 = p exp(i®)

ds = ip exp(iB) dO

(A33)
the limits of integration are 7 to (-%) and the path integral is written:

f [p exp(19)+2p zexp( i6/3] explx expli @] pexp(i 8)

271 1/2 1do
o exp(le)] + 2 [pexp(i®] (A34)
Again let the integrand be denoted 3, then:
JI131 a6 = [|3 a0 (835)
and
o exp(i®) | = |o (cos® + ising| £ |p] (436)
[2"7% exp(-i6/2) | = |0*® lcos(8/2 +isin(O-a]1) = |o*?]  (a37)

Jexp (o exp(iBt) 1| = Jexp [ (cos®)t ] [ cos(atsin® + isin(asin®] |...
..Z exp [P cos(t)]

(A38)
Applying Eqs (A35) through (A38), Eq (A34) becomes:
-7 2 -1-2
B z: f (f u Zf/z ) exp [pcos(Bt)] 46 (A39)

+ 20
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In the limit as o> 0 this expression becomes:

A -
v Jode =0 (A40)
n

and path 4 does not contribute to the integral.
On path 3, s is parameterized by r exp(im), with the limits on r

going from R to ©. When the appropriate substitutions are made:

s = p exp(if) = pr (co8 T+ igin M = - r
ds = dr exp(im) = -dr
7% = 2 Zexplinszn = ir'7? (A41)
-1.2 -1-2 . -1-2
] = r exp(-in~-2) = -ir
and the integral term is then:
A o (_rz ) 2r-1/z) (A42)

. exp (-rt) (-dr)
2m g ( rz* 1) +12r‘/2

but, the denominator must be rationalized:

e 2 _ -1,2 2 PP v
- E%T I (-r~ - 2r )L(r% 1) -i2r :Lz exp (-rt) (-dr) (A43)

R [(r2+ 1 +i2e' 210002 1) -i20*7Y
In the limits as © +0and R » ©:

A < 3+ 'S 2_1/2)
r r + + Lvar
- WRp -1y dy
- f " > B (A44)
W r + 2r + 4r + 1
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Dividing through by i:

o[  =a -1.,2
A J~ L(r +r + 4> (2r > v od
- exXp (—-r r
21 4 2 Py
] (r +2r +4r + (r +2r2+4r +1) (A45)
On path §:
s = r exp(in) = p (cos m + isin M = - p
ds = dr exp(in) = -dr
1,2 1,2 . 1,2
] = r exp(-inrz) = -ip
-1,2 -1,2 . . ~1,2 {A46)
s = p exp(-ifnrs2) = ir

and the limits of integration are o to R. Following the same procedure

ag uged on path 3 produces:

[s ¢} R 3 -1/2
A J- w(r +r + &) R (2r 3
21

exp (-rt)> dJdr
P P— 14 (A47)
Of <(r +2r +4r +1) (r +2r +4r +1)

The limits of integration on paths 3 and 5 are reversed. Combining Eqs

(A45) and (A47) and using limits of integration from 0 to ® produces:

-1/2

[+ o]
A (2r ) (A48)
- j. ———————— axp (-ru dr

4 2
o (r +2r +4r +1)

The total Laplace inversion is then:

£ Rs) ) = R = 0.73232 ¢ 2 %*7" 008 (1.72127¢ - 0.65966)

™ -1,2
A (2r >

” 5 exp ¢(-riy & (A49)
O (r +2r +4r +1)
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The integral in Eq (A49) does not have a simple closed form
solution. Therefore, it becomes necessary to break the integral into
three parts and make asymptotic approximations to the upper and lower

intervals. For small r, r*+ 2r% 4p « 1 and Eq (A48) can be written:

r

2a 1 _-1/2

s J' r exp(-rt) dr
o

(A50)

The upper limit of integration is determined by a trial and error
process. Agreement between the integrands in Eqs (A48) and (AS50) must
be accurate to within three significant digits over the interval of
integration to favorably compare with the experimental data. (Since the
experimental data contained three significant figures). The worst an
asymptotic approximation could do over the interval of integration would
be to produce a constant error. The difference between the actual
integrand and the asymptotic approximation would then be the error at
the upper limit of integration multiplied by the interval of
integration. If rtis chosen to be 0.00025, then:

-4/2

= 63.426 and r = 63.1824 (A51)
4 2
r +2r + 4r +1

-1/2

and P = 0.00025 produces an estimated error over the interval which is
much smaller than three significant digits. Eq (A50) contains an
exponential term which can be expanded in an infinite series and

combined with the r-i/z term:
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. 00025 . 00025  ®
2A ~1/ __1/2 3,2 2 _2A - (- n n~1-2) n
r-z——f (r r t+p t+ .,..) dr = —nf [n‘—_'o( 1) r t]jr
o o
(A52)
Upon performing the integration, Eq (A52) becomes:
2_A; <o.ooozs)(nﬂ/2)q.h (A53)
T n=0
n o+ 1,2

This series is convergent for t(4000 seconds and it is not anticipated
that the response of the system will last this long.
For large r, an integral which closely approximates the integral

in Eq (A48) is:

2A
n

_f r 72 exp(-rt) dr (a54)

r
2

If a value of 30 is gelected for r, the difference between the integrand
of Eqs (A48) and (A50) is less than 10°% 11 the same criteria for
approximating the lower limit integral error is applied to this upper
integral, then 30 is a good choice. Section V contains a discussion of
of agsymptotic limit selection. It’s impossible to perform numerical

integration on Eq (A54), but if the substitution wu = t1.r is made:

1730

2A 52 (AS55)
— j; u exp(-t/u) du

and Eq (A50) now becomes:
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0 (n+1/2) N T -1/2
24 (0. 00025) t R 28 J. 2 r e@xp (-rt) d
s n +1/2 4 4 2 r
n=0 r‘1 (r +2r +4r+1)
130
24 5/2
+ —_— -
- j; u exp(-t/u) du
(A56)

Using a composite Simpson integration algorithm (5:162-167) the
value of the two integral terms in Eq (A56) can be determined to within

a specified error value. For example, the upper integral:

2 52 m-1 m ]
— j'u exp(-t/u) du = 3 [f(d + 22f(x2j) + 42f(x2j_1) + (139
a =1 Jj=1
(1,30 - ©) 4 4, S/2
o h f (u exp(t/u)) |u=“ (A57)
where
h = integration step
= some mean value (from the mean value theorem)
2m = the number of integration steps required
4

n
—
-
]

the fourth derivative of the integrand.

The last term in Eq (AS7) is the error term. To obtain a conservative
integration step for a wide range of times, it is chosen to be close to
the 1-30oth end of the interval and t ig chosen as small as possible.
This selection produces the largest posgible error for the interval for
all time and appears to be a conservative selection.

The same type of composite Simpson integration routine can be used
for the interval from 0.00025 to 30. Appendix B is the Fortran source

code for calculating the response using the method detailed here. The
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program ig liberally commented and a detailed description of the input

ig included. Using this program, Figure 27 depicts an output plot of

these results.

Closed Loop Example

For the closed loop system the equation to Laplace transform is:

X - 1.6324 DI " (x) + 2.801 % - 1.1156 D17 %(x) + 1.4142x = 0 (a58)

with inital conditions %(0) = 0 and x(0) = A

The details of the procedure will only be summarized for this case,

£ {x) = gR%- 8x(0) - %(0) = %% - As
£ D?/z(x)} = s Y%sR% sxc0) - %(0)1 = 82722 - as
£ (%) = s% - x(0) = sR - A (A59)
2 (0% = s TSR - x(0)] =gt 7ER - as TV
Substituting back into the equation and solving for X:
. A (s - 1.63245""% + 2.891 - 1.115658 7% (460)
s” - 1.6324s°7% + 2.891s - 1.1156s *"% 1.4142
The roots of this characteristic equation in the ;-plane are:
PP, = 0.7892 *il1.2346 ; p_,p,= 0.0270 *i0.8111 (A61)
Mapping these roots back into the s-plane :
pi,;?1 = - 0.65715 * i0.0438; p2,52= -0.9014 * i1.9487 (A62)
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@
® The residue at s = -0.65715 + i0.0438 is given by the expression:
R( y = 119_’ [
Py Py
A A (s-1.63243"7%+2.891-1.11156s 7% (s*7%+0.027+10.8111) exp(-st)
d (s*7%-0.7892+11.2346) (s'7%-0.7892-11.2346) (s*7%-0.027+10.811)
(A63)
Carrying out the calculations and combining the result with the residue
® obtained at p can be shown to produce the residue expression:
R(p ;) = 2.25721A exp(-0.65715¢t) cos(0.0438t + 0.74302) (A64)
1'%
® The residue at P, isg:
R( ) = lig_’ [
P, P,
A (s-1.6324s"7%+2.801-1.111568"'7%) (2*7%+0.9014-11.94877) exp(-st)
o (s*7%-0.7802+11.2346) (s*7%-0.7892-11.2346) (¢*7%-0.027+i0.811)
(A65)
which results in the residue:
o
R =, = 0.82138A exp(-0.9014t) cos (1.9487t - 1.15255) (A66)
(p,.p,)
o
Again, when evaluating the paths for the contour integrals, the
only paths which contribute are pathg 3 and 5 and the resulting
integral:
L
A 12.30854 r*"% - 1.63425 r *7%] exp (-rt) dr
— = 5 5 (A67)
or - J3.11727r + 7.41348r - 6.84149r + 2
[
(110)
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Finally, after calculation of the asymptotic approximations the full

equation in the time domain:

x(t) = 2.25721A exp(-0.65715t) co=(0.0438t + 0.74302)

+ 0. 2138A exp(-0.9014%) cos (1.9487t - 1.15255)

. 2.308541\020 0.00025 ™3 "
T nE

o ( 2n + 3)

. _A I°°[2.30854 r*7% - 1.63425 p *72) exp (-rt) dpr
k14 4 3 2
or* - 3.117270° + 7.41348r% - 6.84149r + 2

+ 2.308544 /2% 2,

= u %exp(-tu) du (A68)
1

When substituted into the Fortran program, RESPONSE, with the input

parameters listed in Appendix B, the output of this equation is

illustrated in Figure 28.
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Appendix B

Fortran Source Code - Laplace Transform Method
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Appendix C
Mittag - Leffler Expansion Method for Predicting Time Response

The Laplace inversion method for analytical prediction of closed-
and open-loop system response agrees closely with experimental results.
The method has drawbacks which ma-e alternative methods requiring less
up-front work attractive. Up-front work refers to hand calculation of
the residues, calculation of four derivatives of three functions, then
programming these derivatives into the function routines, and finally
making engineering judgments on the points at which to apply the
agymptotic limit expansions. There are many points at which errors can
be made in this process. Is there a simpler analytic tool to use?

The Mittag-Leffler expansion method (12) employs a time-domain
solution technique. Identity relations for D?/z(x), D:(x). and D:/z(x)

exigst ag follows:

1-2 1.2
Dt (x) = Dt X
1.2, 1,2 1 )
Dt [Dt (x)] = Dlx = % 1)
1,2 _1 a2
Dt [Dt(X)] = Dt X
and D:/Z[D?/Z(x)] = Dfx = x

The entire gecond-order equation can then be written:
1,2 a2 1/ 1 17 1/ 1/ _ -
mD, %103 %(x)1 + ¢ 07D ¢ e p I Il ¢ g V0 = kx = uit)

t
(C2)
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Eqs (C1) and (C2) can be put together into a set of linear equations in

matrix form:

32 32
o O O % D1 X a 0-1 o Dt" x G
1
1./2 o 0O 1 © Dt «x -1t 0 © Dt x o]
D (x) 1.2 + 1/2 =
t o 1 O O D X -4 G O O Dt” "x ©
m ¢ ¢_ ¢ 0O 0 0 k )
1 %2 %3 .4 X [V
(C3)

If the fractional derivative operator, D:/z(x), is replaced by X\,

Eq C3 becomes:

o o o 1 o o0-1 © kz o
X o 0o 1 O . 0O-~4 0 O )N R o (C4)
o 1 O O -4 0 o0 © A o)
m ¢ c_c 0O 0 0 k 1 u(t?
1 2 3
and if wu(t) = 0, the zero state response of the system is
characterized:
o o -1 A Kz o
o ~14 X o A _ o (CS5)
-1 A o o L o
mA ¢ A c A c A+k 1 o
1 2 3
Now this is an eigenvalue problem and has the same characteristic
; . 1.2
equation of the system posed in terms of Dt :
< 3 2
mA 4+ c‘>\ + c27‘\. + cak + k=0 (C6)

®
Using a root golving routine, such as that contained in Matrixx , the
eigenvalues are simply the roots of the characteristic open- or closed-
loop differential equation. The system response can now be posed in

eigenvalue/eigenvector format:
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Df’%(t) Al
1 2
DL x(t)r - A1
D, % (t) A
L x(t) J L 1
or gsymbolically:
{ D(¢) )} =

Total system response is the sum of the characteristic behavior

P
Nw

N

A2

2 A2
2 2
A3 )
A3 Ae
1 1

{A) (am) )

a (t)
1
az(t)

aa(t)

La (t) J
.

belonging to each root of the differential equation:

x(t) =
L

and the at(t) is a series expansion:

4

-
z, at(t)

17
a(t) = a(0) E__(At*3

The expansgion, E1/z is defined:

oo
E _,(z) = z

Caa + n-2)

[ is the gamma function or generalized factorial.

solution is then:

<+
x(t) = §__.'

The aL(O) termg arise from the initial condition vector, { D{(0) }.

Eq (C8):

ngo ai.(O)

( )\Ati/z)n

1

F(1 + ns2)

(a0 Y=L A1 (Do)

The at(t) terms can be complex numbers.
implemented on a mainframe computer uging any type of programming

language. However, to implement it on a Z248 PC, one must use the
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The solution can be

(€T

(C8)

(C9)
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(cr2)
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. . : . ® .
macro-programming routines in Matrxxx to be able to work with complex
numbers. These macro-routines are portable to the Matrixxshersion
contained on the AFIT Vax mainframes. Appendix D contains the

.. ® . . .
Matrlxx routines, files, and instructions for their use. It is
programmed so the expansion Ei/n can be done for any i-nth order value
desired. This is accomplished by responding to the prompt for system
dimengion with (2%n). For example, if the second order equation
involved quarter derivatives instead of halves the response would be

[(2)(4)] = 8.
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Appendix D

.. ® .
Matrlxx Code for Mittag - Leffler Expangion

Page 141 contains the code for MITLEFR.DAT which is an executable file.
To run, execute Matrix , ensure MITLEFA.DAT (page 142) and MITLEFB.DAT
(page 143) are present on disk, then enter "EXECUTE [ MITLEFR.DAT"]".

Follow the prompts.
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//(T00UT,X00T, XERR !-RSPCAL (AZER0,4,N)
/...
//... accept routine contrel input
/...
INQUIRE TSTART 'INPUT START TIME: '
INQUIRE TZERO 'INPUT START TIME OF DESIRED IKTERVAL: '
INQUIRE TMAX  'INPUT MAX TIME: '
INQUIRE NUMPTS 'INPUT NUM OF POINTS TO CALCULATE: '
INQUIRE NUMITS 'NUM OF TERMS IN MITLEF SERIES: '
/...
/1... calculate time increment & setup to correctly define initial time
/...
TINC-(TMAX- TZERO)/NUMPTS;
T=TZERO-TINC;
FOR INC=0:NUMPTS,...
/...
// establish matrixx compatible gstorage index and initial increment values...
/...
INDX=INC+1;...
Z3=0:...
T=T+TINC;. ..
...
/7 1f interval start prior to response start set calcusition time to zero...
H...
IF T<(TSTART,TCALC=0;ELSE TCALC-T-TSTART;END,...

...
/t get up initial values for gamma function...
...
PRE1=1.0;PRE2=0.5;LBIT=1;...
/...
/1 calculate the firgt 2 terms in the Mittag-Leffler (ML) series...
/{ ... use these termg agz multipliers of the integer and...
1 non-integer gamma function terms of the M-L series...
/...
FOR I=1:¥,...
2(1)=-A(1)*SQRT(TCALC) ;...
ELAST1(I)=1.0/PREl;...
ELAST2(I)=2(1)/(SQRT(PI)*PRE2);...
ZX=ZX+AZERO(1) #{ELAST1(I) +ELAST2(I)) ;END,...
1.

// set up the correct denominator for the next non-integer gamma term...
/...
PRE2=PRE2+1
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/...
// LBIT controls the use of the integer or non-integer gamma function terms...
// ...the next loop calculates the j+2 term of the M-L series for each of...
/1 the n roots...
/...
FOR J=1:WUMITS,...

R=0+JAT#0; ...
/...
// calculate the gamma function term and set up for the next loop...
/...

IF LBIT=1,DEN=PREL;PRE1=PREl+1;LBIT=2;...

ELSE DEN=PREZ;PRE2=PREZ+1;LBIT=1;...

END, ...
FOR I=1:N,...
]
// wultiply the last integer/non-integer term by z#42/n-1 to get the...
/! coprect M-L term for the ith root...
/...

IF LBIT=2, ELASTI{I)=(ELAST1(I)#Z(1)%%2)/DEN;...

R=R¢AZERO (1) *ELASTI(I):...

ELSE ELASTZ(I)=(ELAST2(I)+#Z(1)##2)/DEX;...

R=R+AZERO(I) #ELAST2(I}: ...

END, ...
END,...
/...
// X represents the sum of the i roots for each term...
...
ZX=2X+R;. ..
END,...

/...
/1 store the output for each time step...
20UT (INDX)=REAL(ZX) ; XERR{INDX) =IMAG(ZX) ; TOUT (INDX) =1;...
EXD
/...
// save the data file in a format readable by grapher...
/"...
FSAVE 'MITAPP.DAT' TOUT X0UT
RETF
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Appendix E

Oldham - Zoski Circuit Design Parameters

A summary of the design and fabrication process involved in

realizing the Oldham-Zoski resistor/capacitor domino-ladder circuit,
: ; , vV . L,
which will perform the operation d/dt on an input electrical gignal
is presented. The valid range for v:
1K v (] (E1)
where ¥ less than zero indicates integration.
The basgic circuit is referred to as a domino ladder and
consista of a chain of resistors and capacitors, the tvo
chains being connected at each node as in Figure 3. Each

resistor is a constant factor multiple of its predecessor
as is each capacitor giving the relationship:

R =R g’ and ¢ =c_ a! (E2)
J o 3 o

wvhere both g and G are greater than unity.
To proceed select a value of v; then

ina < 3,2 Foaded (E3)

and ln g = (=) vt in g azan (E4)

The rest of the method follows the basic guidelines established in
{17). However, the derivation is put in terms of frequency instead of
time, ag was done in the original Oldham-Zoski article. First, a minimum
frequency, f , is selected for the application (f is in Hz). The time

constant of the first resistor-capacitor pair ig then:
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2.3
_ 111 exp ( -3v " 7)
RC, = sec (ES)

fmGg

Any combination of resistors and capacitors which produces this time
constant is acceptable. As explained in the analysig section, the
smaller the capacitance values the better. This must be balanced, on the
other hand, by the values of the largest resistors and smallest
capacitors available. If |v| ig =1 , or the frequency range is large,
the design will require more cells than if |»| is small. This could
possibly put a limit on the initial resistance and capacitance values
used. It ig also wise to make the tolerance on the components less
than 2%. This appears to guarantee good performance.

To calculate the number of cells required in the domino-ladder,
gelect a desired upper frequency limit, fu‘ The number of cells
required, N, is then:

N+ 12[6.5¢+In(f,f) -3 [in(g@) 1 (E6)

Some enhancements for the high- and low-frequency performance are
available (17:33). To increase the accuracy at high frequencies, modify

the final resistor capacitor pair:

N -N
from RN Rog to s.2 ROS

-~ N (ET)
CN = COG to 2CG
and introducing a final registor at the output of the circuit:
-N -1
RN+1 =R 8 (In g) (E8)
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Low-frequency performance can be improved by adding an additional

registor-capacitor pair at the start of the circuit

1 CoG
R_1 = (172 + - 0) ch and C_1 (EQ)
[ 1.2 + 1~ \na ]

While circuits produced using this method possess the correct Bode
magnitude slope and phase response, the actual gain value at w = 1

requires adjustment to 0 dB. This adjustment depends on:

v = fractional order

C = Capacitance of the analog circuit interface component
R =  Resgistance of the analog circuit interface component
Ro = Resistance of the Oldham-Zoski base resistor

Co = Capacitance of the Oldham-Zoski base capacitor

On the Pace analog computer (model TR48) there are two possible
interface resistor values, 10KQ and 100K2. The two interface capacitor
values are 0.02uF and 10.04F. Figure 47 shows the possgible
configurations available to obtain specific fractional differentiator or
integrator values and the corresponding equations to calculate the gains
required for a given circuit. Table 2 containg the calculations of the
gains for the two circuits built for this thesis and compares predicted
and actual gains required. Table 3 details the method of configuring
the operational amplifiers and capacitors to take advantage of the four
different interface components.For further information on the

O0ldham-Zoski circuit refer to reference 17.
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Table 2. Circuit Gains - Predicted Versus Experimental
Oldham-Zoski--Analog Interface Configuration 4

nr 2
Predicted "T7§‘"“ Experimental
RC° ln(Gg)
Circuit | 26.52 25.06
Circuit 2 13.206 11.47

Table 3. Details for Realizing the Four Different Analog Computer
gurations for the Oldham-Zoski Circuit

Interface Conf

CONFIGURATION 1

Input signal to either a x10 terminal on an
operational amplifier (R=10k) or a x! input
terminal (R=100k). Output of the amplifier
is input to the 0Z circuit, output of the

0Z circuit is connected to the xl0 input
terminal on the amplifier (10K must removed
from the last 0Z registor before connecting.

CONFIGURATION 2

Remove T plug from one of the integrator
moduyles. Insert 2 pin bottle plugs in the
‘0.1 and "SPEC’ terminals, and a 4 pin
bottle plug in the "OPR/RESET® bug. In
thig configuration C=10.F. Removing the
bottle plug from the "0.10/3 area gives
C=1uF. The 02 circuit is connected to the
amplifier as in Configuration 1. The input
to the capacitor is connected to the °SJ°
input terminal, the output is then avail-
able at the "0° terminal. Connect this
terminal to an input terminal on the oper-
ational amplifier. Use only a 2 pin bottle
plug on the operational amplifier to con-
nect the "B’ and “SJ° terminals.

CONFIGURATION 3

Configure the integrator as in Configura-
tion 2 with the following exception - the
input to the integrator (capacitor) is the
output 2ignal of the operational amplifier.
The input signal is connected to the input
terminal of the 02 circuit. The output
terminal of the 0Z circuit is then con-
nected to the input of the amplifier.

CONFIGURATION 4

Configure the operational amplifier with
a 4 pin bottle plug (R=100K(d. If R=10K
ig degired, use two 2 pin bottle plugs -
one connecting "SJ° and ‘B’ and one con-
necting an output terminal to a xl10 input
terminal. The input signal is connected
to the input terminal of the 0Z circuit.
The output terminal of the 0Z circuit is
connected to the input of the amplifier.
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Appendix F:

Detailed Experimental Procedure

For each task listed in Section IV this appendix details the
instrumentation configuration used to experimentally gather the data.
It also provides references to equipment manuals should additional

information concerning the equipment be of interest.

Circuit Build

The Tektronix Digital Multimeter (model DM501) (28) and Dynascan
Capacitance Meter (model 820) are required for thig step. The scale
on the multimeter should be set to ohms and the proper range selected
for the resistor being meagured. A note of caution on the capacitance
meter: as the capacitances get smaller, the offset error becomes large.

Take thig into consideration when measuring pF capacitors.

Circuit Test

Equipment Used

The criteria for a fractional derivative of order one-half is
a Bode plot with a slope of 10dB/decade and a constant phase shift of 45
degrees. To determine if this criteria was satisfied by the circuits
fabricated, a function generator, counter/timer, and oscilloscope were

used
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Tektronix Function Generator (model FG506) (24:1-1,1-3).
Capable of producing a 10 volt peak-to-peak sine wave at frequencies from
.00]1 to 50 MHz when shunted across a 50Q impedance load.

Tektronix Universal Counter/Timer (model DC509) (25:2-1,2-13).
Two channel input, with adjustable trigger voltage for each channel.
Capable of measuring frequency to within 1x10—6 Hz for the frequencies
of interest; period to within 1X10-5sec; and phase difference between
channels to within 1x10° sec when triggers are set correctly.

Tektronix Oscilloscope (model SC504)(26:1.1-2.29). Two channel
display, graticule on the screen capable of representing 0-100% of 5
times the magnitude of the volts/division gsetting. Resolution is 2% of
this range. Volts/division settings spanning 5mV to 10V. The unit has
adjustable horizontal sweep frequencies.

Using BNC T fittings and coax cables, the function generator
output is connected to Channel A of the counter/timer, Channel 1 of the
oscilloscope, and the input of the Oldham-Zoski circuit. This circuit
produces an output current which is the fractional derivative of
the input voltage. The voltage acrogs the last resistor is just the
value of this current multiplied by the value of the resistor. This
voltage is the voltage to be compared with the input voltage. (It is
important to place the output measurement device in parallel with this
last resistor. Since they are high-impedance devices, very little
current will be required to produce the measurement, whereas a series

measurement would seriocugly affect the circuit current). The voltage
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across the last resistor is connected to Channel B of the counter/timer
and Channel 2 of the oscilloscope.
Procedure
The gain of the circuit is defined, in dB, as:

20 log (v_ /v ) (F1)
It is not necessary to maintain the same input amplitude over the range
of frequencieg tested. However, it leads to the conclusgion that the
voltage input to the circuit is not frequency dependent. Since the
performance of the circuit is necessarily dependent on frequency, it
makes the calculation of gain straight forward if the input voltage is
constant.

Without the circuit attached to the function generator, a 500
resistor should be shunted acrogss the output of the function generator,
and then a common connection should be made to ground; this matches the
impedance of the function generator. A sweep across the frequency band
to be investigated (0.01 to 1000 Hz)should be made. The amplitude of
the input voltage on Channel 1 of the oscilloscope should be observed.
If no changes are evident then the assumption can be made that the 0Z
circuit input voltage remains constant. The circuit should be connected
in parallel with the 50 resistor. Since the impedance of the
Oldham-Zoski circuit is several orders of magnitude higher than the 50Q
registor, the parallel combination will appear as a 500 impedance to

the function generator.
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Amplitude Ratio Determination

The procedure is as follows:

1. Set function generator to a desired test frequency (record)

2. Set counter/timer to frequency and validate the frequency.

3. Ground both channels of the oscillogcope and adjust the zero
position of each channel.

4. Set both channels to DC input coupling

5. Adjust the volts/division reference for each channel to give the
maximum deflection without exceeding the 100% mark on the
graticule.

6. If a volts/division change was made, repeat step 2 for the
appropriate channel.

7. Use the chop display mode to look at both signals at once.

8. VUse the percent values listed on the left side of the graticule
to record each channel's amplitude as a given percentage of 5x
the value of the volts/divigion getting for that channel.
Divisions on the left hand side of the graticule are 4% per
minor division, giving accuracies of *2% Use Eq (F1)

to determine the gain for the frequency just tested.
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L

Phase Determination

After calculating the gain at a given frequency the following

procedure will determine the phase angle:

l.

2.

On the counter/timer select the "PERIOD A" function.
Select the desired number of cycles to be averaged together on
the "Averages ™ selector. Select 1 for frequencies less than
0.1 Hz, “Auto” for frequencies up to 1 Hz, and adjust
to stabilize the reading for higher frequencies. Record the
period in the data table being made.
Adjust the trigger voltages to provide an accurate evaluator
of the phase shift.
3a) For both channels, ensure the following configuration:
"SLOPE®: both the same
"ATTEN": "x1°
"SOURCE": "Ext”
"COUPL": AC
Ensure the button on the timer/counter marked “AUTO TRIG
LEVEL" is not depressed.
3b) Using the multimeter with needle probes, select
‘DC VOLTS ™ and "200 mV', insert the positive lead into
the contact marked "A - TRIG LEVEL® on the timer/counter
and the negative lead into the contact marked "COM -
SHAPED OUT®. Adjust the channel A trigger level to as

close to zero as possible on the multimeter readout.

(154)




Switch the positive lead to "B - TRIG LEVEL' and repeat
the adjustment for channel B to get the trigger as close
as possible to the value for channel A.
4) Select the "TIME A+B' function, the phase shift time will
appear in the readout. Record.
5) Calculate the phase shift as follows:
("TIME A»B°/ Period) * 360 = ¢ (degrees) (F2)
6) Record values; repeat gain and phase procedure as required.

Hewlett-Packard HP7090A Analog Measurement System

Overall circuit performance depends not only on steady-state
performance, but also on start-up transient characteristics. It became
clear that observing the startup transient was a necessity. How long
did it take the circuit to become an efficient fractional
differentiator?

To angwer this question, a Hewlett-Packard Analog-Digital
Meagurement Recording System (model 7090A) was obtained and substituted
for the oscilloscope. The recorder is capable of plotting 3 channels of
input data, with a sampling rate of 33 kHz. The model 7090A also has
three 1000 word-length bufferg (one buffer for each channel). Each word
represents a time slice of 1000th of the total time window specified
prior to data recording. After experimenting with this total time

window, it was observed that three to five cycles of the input sine wave
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® produced a steady-state response of the circuit, and sufficient data to

accurately determine gain and phase shift. The equation used as a guide

for the total time setting:
] ttoml = § cycles # [ 1/ ( sz)] (F3)
Another feature of the model 7090A is the ability to record data prior
to the start-up of the system. A trigger function represents the actual
® start of the measurement. This trigger can be set internally to occur
at a specific clock time, or it can be controlled externally. By

specifying a duration of pre-trigger recording time, t all events

pt’

® occurring within tpt seconds prior to the actual trigger event are
recorded. In addition, if tpt seconds pass after starting to fill the
buffers without the trigger event occurring, the oldest pre-trigger data

® ig written over so that only the latest tpt seconds of data are retained
in the buffer.. These features allow the actual startup transient of
the circuit under test to be recorded (27:3-1,24).

» The external triggering system of the model 7090A can be accessed
through a BNC fitting on the right-hand side of the unit. The trigger
useg TTL logic, and is activated when the signal level is connected to

@ ground. This made fabricating a trigger quite easy. A coax cable was
attached to the trigger input. A short piece of insulated wire, with
one end stripped of insulation, was inserted into the female connector

@ (signal) of the BNC fitting at the free end of the cable. To activate
the trigger, the wire was grounded to the shield of the coax cable.

(27:5-1,9).
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After the trigger event, the input channels are recorded until the
buffers are full at time ttot' Each buffer recorded can then be
plotted. A special function allows the buffer to be stepped through, one
location at a time. The plotter moves the pen directly over the point
on the plot representing the current storage location; its value is
observabie on the LCD display on the plotter. If the point represents a
point of interest, such as a peak in a curve or a zero amplitude, a
function can be selected to mark the point with a “+° and annotate it

with voltage and time values (27:4-1,10).

Determination of Gain and Phase Angle Using the Model 70904

To interface input signals with the model 7090A use banana plugs,
or a coax cable with a dual banana plug adaptor. Connect the ground of
the device or circuit being measured to the ground jack on the
recorder. Configure the input signal from the function generator into
channel 1 of the recorder, and the output of the Oldham-Zoski circuit
into channel 2. Repeat the congtant amplitude input voltage check as
previously mentioned. Input values can be observed on the LCD display
and do not need to be plotted (this was repeated once; the voltage
remained constant over the frequency range).

For a given frequency determine the total time from Eq (F1) and the
desired pre-trigger time and input to the plotter. Select channels 1
and 2 for recording. Set the expected voltage for each channel. Set

the frequency generator to the desired value and verify with the
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counter timer. Turn the frequency generator off. This permits
recording of the start-up transient of the fractional differentiator.
Press the "FILL BUFFER® switch; after sufficient time has passed to load
the pre-trigger buffer, turn on the function generator and ground the
trigger wire. After the buffers fill, plot the buffers twice
(27:4-7,8). On one annotate the points of interest on the input
channel. On the other annotate the points of interest for the circuit
output. The points of interest used for the data in Appendix G are the
maximum and minimum points of each cycle and the negative slope time axig
crossings (the LCD display, in the annotation mode, can be invaluable in
selecting these points) (27:4-8).

The period, gain, and phase are calculated as follows:

Period:

FINAL PEAK VOLTAGE TIME (SEC) - INITIAL PEAK VOLTAGE TIME (SEC)
NUMBER OF CYCLES BETWEEN THE PEAK VALUES USED (F4)

Gain:

2 [OUTPUT VOLTAGE PEAKsS +|OUTPUT VOLTAGE MINIMUMSs []/ [# MAXES + MINS]

Z [INPUT VOLTAGE PEAKS + | INPUT VOLTAGE MINIMUMSE |]/ 1# MAXES + MINS]

(F5)

This method compensates for offsets in the input and output voltages.

Phase Angle (using paired input and output time axis crossings):

Z [INPUT TIME AXIS CROSSINGS (sec)1-% [OUTPUT TIME AXIS CROSSINGS]

NUMBER OF CROSSINGS EVALUATED * TOTAL PERIOD (F6)
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This method proved much easier and faster than observing the
oscilloscope, counter/timer, and continually making the necessary

adjustments.

Analog Components and Tasks

Figure 20 shows the PACE® analog computer (model TR48), with its
three major panel subdivisions - the control and monitoring panel on the
left, the component panel in the center, and the potentiometer
adjustments on the right.

Control and Monitoring Panel (22:1-11)

There are three items of concern for operating the analog computer
on this panel; the multi-colored mode select keys, digital voltmeter
(DVM) , and the operational amplifier/potentiometer selector keypad.
First the mode select keys. There are four of interest for the tasks at
hand; "PS", potentiometer set; "IC", initial condition; "OP°, operation,
and "HD", hold modes. To select a gpocific mode, simply depress the
appropriate key. The amplifier/potentiometer selector keypad simply
selects one of the numbered potentiometers or amplifiers (depending on
whether the "A° or "P° selector is chosen) for display on the DVM.

To view the value of a specific potentiometer used for establishing
the coefficients of the differential equationsg, depress the "PS° key.
This isolates the potentiometers from their input voltages, giving their
true values in the circuit. Depress the black "P" key, then the
appropriate two-digit potentiometer identifier as listed on the

component panel. The desired value can now be read off the DVM.
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To view the output value of a sgpecific amplifier in any mode,
depress the "A" key and appropriate two digit designator of the desired
amplifier as found on the component designator panel. The output of all
amplifiers is a varying voltage level. The DVM represents this level
as a certain percentage of the computer’s reference voltage of 10 volts.
Therefore, when the DVM reads 0.2500, the output of a given amplifier is
actually 2.5 volts (22:1-11)

When are the different modes used? Use "PS° mode when setting and
rechecking potentiometer values. The potentiometers have a tendency to
drift, so after a few data runs switch back into the "PS" mode and
recheck the values. Use "IC"° at the completion of a data run, to abort a
run, or to reestablish initial conditions. When in the "IC" mode, the
initial conditions for each operational amplifier and potentiometer can
be viewed on the DVM. Thisg capability ig ideal for verifying proper
circuit configuration. After everything is properly configured,
depressing the "OP° button starts the simulation by activating
the integrators. The "HD" key freezes all computations at the current
levels and permits observation of intermediate values (22:1-20)}.

Located on the center panel of the model TR48 are many components
required to gimulate control systems and differential equations. Only
the onesg used for the open- and closed-loop gimulations will be

described.
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Summing, Inversion, and Factor of Ten Multiplication

These functions are provided by the "6.514 Dual DC Amplifier"
(22:3-1). All amplifiers on the model TR48 are inverting amplifiers,
that ig, the output voltage is the negative of the input voltage. A
voltage input to the jack labeled “10° produces a negative ten times the
input voltage. If more than one voltage is input to the operational

amplifier, the output is the sum of the input voltages multiplied by the

value of the input jacks used.

Attenuators (Potentiometers)

Without attenuators, precision multiplication would not be
possible. The "42.283 Attenuator Module’ (22:2-1) congists of
5, wire-wound resistors and whose resistance is established by the
setting associated with its control dial. The dials are divided into
one ten-thousandths increments. Circuit schematics and flowchart
symbols for the potentiometers are shown in Figure 22. To obtain a
desired voltage, for example 0.8973 X the following procedure applies:
1. Patch the input voltage into the upper terminal of the
potentiometer
2. Patch the output of the potentiometer to the input of the next
device
3. Determine the component identifier of the potentiometer (for
example PO7)
4. Depress the "PS° key to go into Potentiometer Set mode

5. Select "P", "0°,and "7', using the selection keys
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6. Observe the current value of the pot on the DVM
7. Unlock the °P07° dial on the right panel and adjust until
the DVM reads 0.8973
8. Lock the dial, making sure the potentiometer value remains the

same
The output of P07 will now be 0.8973 of the value input.

Integrators

The "12.1322 Dual Integrator Network™  (22:4-6) produces
the integral of the input voltage with respect to time. Reference the
symbol under "X(0) =2.0°, depicted in Figure 34, for the circuit
schematic associated with an integrator. Note the value at the top of
the x integrator, this is the initial condition applied to the
integrator, and is the output of the integrator when in the "IC" mode.
This value is established with a reference voltage input to the "IC" jack
on the integrator. Again, the integrator is an inverter and
the negative value of this voltage is the initial condition. When placed
in the "OP" mode, the output of the integrator is:

- ( 5% [ input voltage(t) ] dt + IC (F7)

Comparator

To successfully interface the model 7090A with the analog computer,
the recorder must receive its input signal at the moment the op button
ig depressed on the control panel. As previously discussed, the
model 7090A activates its trigger when the signal voltage is connected

to ground. To correctly patch this logic, the “40.404 Relay Comparator’
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(shown gchematically in the upper right hand corner of Figure 23
igsolating the one-half derivative input) is used. The trigger input
signal from the model 7090A recorder is patched into the common terminal
of the switching relay, the trigger ground into the comparator terminal
marked °"-°. The switching voltaje required to initiate the trigger
signal is provided at the output of the "OP" busg jack on the

12.132 Dual Integrator when the "OP" mode is selected. When the computer
ig in “IC° mode the output of the "OP" bus jack = 0. This makes the
output of the comparator positive and the model 7090A trigger signal is
isolated from ground. When the "OP" mode is selected, the output of the
comparator is negative, closing the connection between gignal and

ground.

Function Switches

On the right-hand panel of the model TR48 analog computer, below the

potentiometer adjustment dials, are five toggle switches. These

switches are three-position, sinjle-prle switches connected to the
"12.766 Function Switch Module”™ (22:2-6). When the switch is moved to
the left, the input is connected to the "L° output jack. Likewise, the
"R° contact is closed when the switch is moved to the right. This

switch is useful in connecting different forcing functions to a system
model. In this specific case, several f(t)s could be available for
switching in and out of the circuit. This switch was used in the

‘Total-Cycle Simulation® to apply and remove the input step voltage.
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L More detailed information on these components can be found in the
EAI PACE (model TR48) Analog Computer Reference Handbook (22).

Steps for Programming an Example Simulation (23:84+)

For an example simulation set-up, program a harmonic oscillator X
+ x = 0 with an initial condition x(0)=2.5 . To run the simulation:
1) Select three operational amplifiers and 3 potentiometers and

define as follows:

Component Purpose
A01 X
A02 configure as :
A03 integrators
POl m
P0o2 k
P03 x(0)

2) Mak2 the following patches:

From To

A0l OQutput POl input

POl Output x10 AO02 input

A02 Output x1 AO0J input

A03 Output P02 input
-10 Ref on P00-04 module 203 input

P03 Output A03 IC

P02 Output x10 AO01 Input

AO03 Output HP7G30A Channel 1 input

3) Patch the ground jacks for AOl, A02, and A03 and the model
7090A Channel 1 grounds together to eliminate floating grounds.

4) Configure the "40.404 Comparator’ and model 7090A per the
degcription under comparators in this appendix.

5) Depress "PS° selector on the control console
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6) Turn the model 7090A recorder and the model TR48 analog
computer on
7) Press "Restore Setup” on the model 70904 to establish standard
values. Make desired changes to

Channel 1 Range
Channel 1 Offset
Trigger Value

Total Time
8) For each potentiometer, press the appropriate component selection
keys. Unlock the associated potentiometer set dials, and establish the

following values on the DVM for each poientiometer:

Potentiometer Value
POl 0.1000
P02 0.1000
P03 0.2500

9) Depress the "IC" mode select button.

10) Select "A03" for display on the DVM. It should read = 0.2500
(whatever the setting on P03 was)

11) Press 'BUFFER FILL® on the model 7090A, and allow adequate
time for the pre-trigger buffer to fill

12) Depress ‘OP" on the model TR48 analog computer

13) When the "Buffer Full®™ light comes on on the model 7090A:
a) Press "IC" on the model TR48 to end the run

b) Insert paper in the model 7090A
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c) If a grid is desired on the plot
1) Select a pen color with the "PEN SELECT  button
2) Press °Grid~

14) When plotting is complete, annotate the points of interest as

previously mentioned.

The resulting output should be a cosine function with amplitude 2.5
volts and period (m-2) Hz. This circuit can be used for the
analog/half-order compatibility verification trial. Similar methods can
be used for simulating other second-order equations. In this simulation
POl and P02 were not required to obtain the coefficients m and k since
they were both identically equal to 1. The output of A0l and A03 could
have been connected directly to the next component with the same

results. However, the example provided an exercise for establishing the

proper coefficients for each term.




Appendix G

Oldaham - Zoski Circuit Validation Data
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® Appendix G

Oldaham - Zogki Circuit Validation Data
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Table 4. Circuit 1 Performance Validation Data

Frequency (H;) Gain (dB) Phase (deg)
0.0116 -47.85 44.74
0.0505 -41.71 45.81
0.0963 -38.95 45.76
0.1451 -37.26 47.00
0.1934 -36.03 48.04
0.5102 -31.67 46.53
0.9780 -28.88 45.77
5.042 -22.08 44.16
9.750 -19.36 45.40

Table 5. Circuit 2 Performance Validation Data

Frequency (Hz) Gain (dB) Phase (deg)
0.0107 -38.96 42.18
0.0503 -32.75 50.35
0.0976 -29.34 48.51
0.1470 -27.61 46.97
0.1944 -26.62 44.08
0.5034 -23.53 40.11
0.9900 -21.03 43.20
5.012 -13.89 46.92
9.670 -10.79 46.19
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SUMMARY: Feedback of the 1,2 and 3.2 derivatives as well as X and x ia
demonatrated for a second-order system defined by the differential
equation: ,

" 3
mx + c D
1t

X)) +c¢ X + ¢ D"’z(x) + kx = u

2 3t

Three methods of producing the fractional derivative or integral of
an input signal are investigated. The method selected employs a circuit
developed at Trent University, Ontario, Canada for use in
electrochemistry resggrch. The circuit performs the mathematical
operation d ( )/dx for -1 ¢ v ( 1; negative values of ¥ represent
integration. The results presented show the circuit accurately
differentiates a sinusoidal input for a frequency range spanning 0.01 Hz
to 10.0 Hz.

The second-order differential equation above isg simulated on an
analog computer. An optimal u(t) is then used for feedback modification
of the original open-loop system. Improved system performance resulted.

A Laplace transform method and a Mittag-Leffler expansion provide
analytical predictions of the system’'s response. The output of the two
methods is identical. Comparison of the theoretical predictions with
the experimental data shows excellent agreement with respect to the
initial transient behavior and asymptotic behavior of the steady-state
response for both the open- and cloged-loop systems.




